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MULTIDIMENSIONAL CRYSTALLINE MEASURES

YVES MEYER

Abstract. One dimensional crystalline measures are well understood. In two or
more dimensions the theory is still in its infancy. A “lighthouse” is a positive Radon

measure on Rn which is supported by a closed set F of zero Lebesgue measure and

whose Fourier transform is supported by a proper double cone. The pointwise
product between n “independent lighthouses” is still a positive Radon measure.

Under some natural conditions this product is a crystalline measure. This surprising

result unifies the constructions of some two dimensional crystalline measures which
were proposed in [9], [12], and [13].

1. Definition of crystalline measures

Let us fix some notations which are needed to define crystalline measures. The
euclidean norm of a ∈ Rn is denoted by |a|. The Dirac measure at a ∈ Rn is denoted by
δa or δa(x). It is defined by ⟨δa, f ⟩ = f (a) for any continuous function f . A measure is
always a Radon measure in this note. If µ is a real valued and bounded Radon measure,
we have µ = µ0 − µ1 where µ0 and µ1 are mutually singular positive measures. The
norm of µ is the sum between the total masses of µ0 and µ1 and is denoted by ∥µ∥.
A purely atomic measure (or an atomic measure) is a series µ =

∑
λ∈Λ c(λ)δλ of Dirac

measures δλ at λ ∈ Λ ⊂ Rn where the coefficients c(λ) are real or complex numbers and∑
{λ∈Λ;|λ|≤R} |c(λ)| is finite for any R ≥ 0. A subset Λ ⊂ Rn is locally finite if Λ∩B is finite

for any bounded set B. Equivalently Λ is locally finite if it can be ordered as a sequence
{λj , j = 1, 2, ... } such that |λj | tends to infinity with j . A locally finite set Λ is uniformly
discrete if there exists a positive r such that for any λ ∈ Λ and any λ ′ ∈ Λ, λ ′ ̸= λ,
we have |λ ′ − λ| ≥ r . Such a set Λ is a Delone set if it is relatively dense. It means
that there exists a positive R such that the balls centered at λ ∈ Λ with radius R are
a covering of Rn. A measure µ is a tempered distribution if it has a polynomial growth
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at infinity in the sense given by Laurent Schwartz in [18]. For instance the measure∑∞
1 2

kδk is not a tempered distribution while
∑∞

1 k3δk and
∑∞

1 2
k [δ(k+2−k) − δk ] are

tempered distributions. The Fourier transform F(f ) = f̂ of a function f ∈ L1(Rn) is
defined by

f̂ (y) =

∫
Rn

exp(−2π ix · y)f (x) dx . (1)

The distributional Fourier transform µ̂ of a tempered distribution µ is defined by the
following rule: for any test function φ belonging to the Schwartz class S(Rn) one has
⟨µ̂,φ⟩ = ⟨µ, φ̂⟩.

Definition 1. An atomic measure µ on Rn is a crystalline measure if the three following
conditions are satisfied:

(a) the measure µ is a tempered distribution,
(b) the support of µ is a locally finite set.
(c) the distributional Fourier transform µ̂ of µ is also an atomic measure supported

by a locally finite set.

The simplest example of a crystalline measure is the Dirac comb ν =
∑

k∈Z δk . Then
ν̂ = ν and for any function φ in the Schwartz class we have

∑
k∈Zφ(k) = ⟨ν,φ⟩ =

⟨ν, φ̂⟩ =
∑

m∈Z φ̂(m) which is the standard Poisson summation formula. More generally
for any lattice Γ ⊂ Rn the atomic measure νΓ =

∑
γ∈Γ δγ is a crystalline measure and

we have ν̂Γ = cΓνΓ∗ where Γ∗ is the dual lattice of Γ and 1/cΓ is the volume of a
fundamental domain of Γ. In this essay any translated of a Dirac comb is also called a
Dirac comb. We have for any function φ in the Schwartz class ⟨µ̂,φ⟩ = ⟨µ, φ̂⟩ and if µ
is a crystalline measure this is a new Poisson summation formula. The collection of all
crystalline measures on Rn is a vector space. The product P(x)dµ(x) between a finite
trigonometric sum P(x) =

∑
y∈F a(y) exp(2πix · y) and a crystalline measure dµ(x) is

still a crystalline measure.

Definition 2. An atomic measure µ is a trivial crystalline measure if µ =
∑N

1 Pjνj
where each Pj , 1 ≤ j ≤ N, is a finite trigonometric sum and each νj is a Dirac comb.

The distributional Fourier transform of a trivial crystalline measure is a trivial crys-
talline measure. If µ is a crystalline measure and if A ∈ SL(n,R) then the pushforward
measure µ ◦ A−1 is still a crystalline measure. Crystalline measures were introduced
simultaneously by Andrew Guinand in [2] and by Jean-Pierre Kahane & Szolem Man-
delbrojt in [4]. Kahane and Mandelbrojt were studying meromorphic functions ϕ(s)
in the complex plane enjoying the following three properties: (a) there exists a real
number s0 and an increasing sequence of positive real numbers 0 < λ1 < λ2 < · · · such
that ϕ(s) is the sum of the Dirichlet series

∑∞
1 cjλ

−s
j on ℜs > s0, (b) either ϕ(s) is an

entire function or ϕ(s) is a meromorphic function in the complex plane and the unique
pole of ϕ(s) is s = 1, and (c) ϕ(s) satisfies the same functional equation as the Riemann
zeta function. Kahane and Mandelbrojt proved the following theorem:

Theorem 1. Let us assume that properties (a), (b), and (c) are satisfied by the mero-
morphic function ϕ(s) =

∑∞
1 cjλ

−s
j and that there exist a β > 0 and some intervals Jk

whose lengths tend to infinity such that λj+1 − λj ≥ β > 0 for j ∈ Jk . Then there exists
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a constant c such that µ = c δ0 +
∑∞

1 cj(δλj + δ−λj ) is a crystalline measure which
satisfies µ̂ = µ.

From the results obtained by Nir Lev and Alexander Olevskii [6], [7], it can be
conjectured that the only crystalline measures µ of Theorem 1 are generalized Dirac
combs. Then the meromorphic function ϕ(s) of Theorem 1 reduces to the Riemann zeta
function after some trivial modifications. The converse implication is much easier. Let
us assume that µ =

∑
λ∈Λ c(λ)δλ is a crystalline measure and that there exists a s0 > 0

such that
∑

λ∈Λ,λ ̸=0 |c(λ)||λ|
−s0 is finite. A similar condition is imposed to µ̂. Then

the corresponding zeta function is defined as the sum of the Dirichlet series ζ(µ, s) =∑
{λ∈Λ,λ ̸=0} c(λ)|λ|

−s , s ∈ C, ℜs > s0. This function ζ(µ, s) is obviously analytic in the

open half plane defined by s ∈ C, ℜs > s0. If n = 1 and if µ is the Dirac comb then
ζ(µ, s) is two times the Riemann zeta function. If µ is a n dimensional Dirac comb
then ζ(µ, s) is the Epstein zeta function. Kahane and Mandelbrojt made the following
observation:

Theorem 2. Let µ =
∑

λ∈Λ c(λ)δλ be a crystalline measure on Rn and let µ̂ =∑
y∈F a(y)δy be the distributional Fourier transform of µ. We consider the quantity

ξ(µ, s) = π−s/2Γ(s/2)ζ(µ, s). If the above mentioned properties are satisfied then ξ(µ, s)−
2a(0)
n−s − 2c(0)

s = E (µ, s) is an entire function and we have ξ(µ, s) = ξ(µ̂, n−s) identically
on C \ {0, n}.

Kahane and Mandelbrojt observed that Theorem 2 can be traced back to Riemann
and Titchmarsh [4]. If n = 1 and if µ̂ = µ then ζ(µ, s) satisfies the same functional equa-
tion as the Riemann zeta function. The first non trivial crystalline measure satisfying
µ̂ = µ was suggested by Guinand in [2]. Guinand defined a sequence γk , k = 0, 1, ... , of
rational numbers by

∑∞
0 γkq

k =
∏∞

1 (1− qn)(1+ q2n)2/3(1+ qn)1/3 where |q| < 1. We
have γ0 = 1,γ1 = −2/3,γ2 = −4/9,γ3 = −40/81,γ4 = −160/243,γ5 = 268/729, ...

and |γk | ≤ Ck1/3. Let λk =
√
k + 1/9, k = 0, 1, ... . Then Guinand’s crystalline mea-

sure is µG =
∑∞

0 γk(δλk
+ δ−λk

). The Guinand measure µG satisfies µ̂G = µG . This
was announced in [2] and proved in [11]. Nir Lev and Alexander Olevskii gave other
remarkable examples of non trivial crystalline measures [8]. Pavel Kurasov and Peter
Sarnak constructed a non trivial crystalline measure which is a sum σΛ =

∑
λ∈Λ δλ of

Dirac measures δλ on a Delone set Λ ⊂ R [5]. Maryna Viazovska could bridge the gap
between crystalline measures and sharp sphere packings [17].

We now address n-dimensional crystalline measures. The tensor product µ = µ1 ⊗
...⊗ µn between n crystalline measures on the line is a crystalline measure on Rn. Is it
the unique way to construct crystalline measures on Rn? A counter example is given in
[9] for n = 2. But the crystalline measure µ which is constructed in [9] is periodic with
respect to the first variable. It satisfies µ∗δe1 = µ if e1 = (1, 0). The anonymous referee
of [9] is wondering if one could get rid of this limitation. An answer is given in [13]. To
our great surprise each of the crystalline measures of [9] and [13] is a pointwise product
between two independent lighthouses. This observation is the motivation of this note. In
full generality it is proved that a pointwise product between two independent lighthouses
is a positive Radon measure. This is Theorem 5. Theorem 5 and its corollary provide
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us with a general scheme to construct crystalline measures. Theorem 5 is a simple
mathematical fact since it follows from Hörmander’s theorem on the pointwise product
between two distributions. Therefore Hörmander’s theorem is the Ariadne’s thread of
our construction and motivates the definition of a lighthouse. It remains to construct
non trivial lighthouses. That is the place where Ahern measures are useful. They
provide us with a simple recipe to construct lighthouses. Ahern measures are directly
related to inner functions in the polydisc. Finally starting with a pair of two smooth
inner functions in the unit disc one easily constructs two independent lighthouses on R2.
Under a natural condition the pointwise product between these independent lighthouses
is a crystalline measure.

2. Hörmander’s theorem

The pointwise product u v between two tempered distributions u, v ∈ S ′(Rn) does
not exist in general. However this product exists if the two distributions u and v are
independent in a sense given by two-microlocal analysis. This is Hörmander’s theorem
(Theorem 3). Here is a tentative definition of the pointwise product of two tempered
distributions. Let φ and ψ be two functions in the Schwartz class S(Rn) such that∫
φ = 1,

∫
ψ = 1, and let φϵ, 0 < ϵ ≤ 1, be given by φϵ(x) = ϵ

−nφ(x/ϵ). The family
ψϵ, 0 < ϵ ≤ 1, is defined similarly.

Definition 3. Let u and v be two tempered distributions. Let us assume that (i) the
pointwise product (u ∗ φϵ)(v ∗ ψϵ) tends to a limit in S ′(Rn) as ϵ tends to 0 and (ii)
that this limit does not depend on the choices of φ and ψ. Then the pointwise product
uv between u and v exists and is defined by

u v = lim
ϵ→0

(u ∗φϵ)(v ∗ψϵ).

We now follow Hörmander’s seminal work. The singular support Fu ⊂ Rn of a
distribution u ∈ D ′(Rn) is a closed set which is defined by its complement Rn \Fu. This
complement is the largest open set Ω ⊂ Rn on which u coincides with a C∞ function.
The unit sphere of Rn centered at 0 is denoted by Sn−1. The wave front set WF (u) of
u is a closed subset of Fu × Sn−1. Here again WF (u) is defined by its complement in
Fu × Sn−1. A pair (x0, ξ0), x0 ∈ Fu, |ξ0| = 1, does not belong to WF (u) if and only if
there exists (i) a compactly supported smooth function φ on Rn such that φ(x0) = 1
and (ii) a circular cone Cϵ,ξ0

⊂ Rn defined by Cϵ,ξ0
= {ξ; ξ · ξ0 ≥ (1 − ϵ)|ξ|} for some

ϵ ∈ (0, 1) and some ξ0 ∈ Sn−1 such that the Fourier transform of the product φu once
restricted to Cϵ,ξ0

is rapidly decreasing at infinity. Then WF (u) is closed in Fu × Sn−1.
If u is real valued, then (x0, ξ0) ∈ WF (u) is equivalent to (x0,−ξ0) ∈ WF (u). The wave
front set WF (u) of u is empty if and only if u is a C∞ function. Many authors define
the wave front set as a subset of Fu × (Rn \ {0}). These two viewpoints result in the
same definition if a half line emanating from 0 is identified with its intersection with
Sn−1. A set C ⊂ Rn is a conic set if x ∈ C and λ ≥ 0 imply λx ∈ C . Here is an obvious
observation:

Remark 1. Let C ⊂ Rn be a closed conic set and let u be a tempered distribution whose
Fourier transform û is supported by C . Then the wave front set WF (u) of u is contained
in Rn × (C ∩ Sn−1).

4
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Here is Hörmander’s theorem ([3] p. 267):

Theorem 3. Let u and v be two tempered distributions on Rn. Let us assume that

∀(x , ξ) ∈ Rn × Sn−1, (x , ξ) ∈ WF (u) ⇒ (x ,−ξ) /∈ WF (v).

Then the pointwise product u v makes sense and is a tempered distribution.

If Fu ∩ Fv = ∅ Hörmander’s theorem is trivial: locally the product u v reduces to the
product between a distribution and a C∞ function. Hörmander’s sufficient condition
does not allow us to defining |u|2 if u is a distribution which is not a C∞ function. Indeed
|u|2 = uu and if (x , ξ) ∈ WF (u) we have (x ,−ξ) ∈ WF (u). Let us consider u(x) = |x |.
Then WF (u) = {0} × Sn−1. However u2 is C∞. This example shows that Hörmander’s
sufficient condition is not necessary.

Corollary 1. Let C1 ⊂ Rn and C2 ⊂ Rn be two closed conic sets such that C1∩(−C2) =
{0}. Let u1 and u2 be two tempered distributions. If the Fourier transform of u1 is
supported by C1 and the Fourier transform of u2 is supported by C2 then the pointwise
product u = u1u2 makes sense and the Fourier transform of u is supported by C1 + C2.

This follows from Hörmander’s theorem and Remark 1. Corollary 1 can be proved
directly. Corollary 1 applies to the measures σA and σB which are constructed below.
The product µ = σA σB is one of the crystalline measures we are looking for.

Another instance of Hörmander’s theorem is given by the following example. We
assume that:

(i) n = 2, Γ1 ⊂ R2 and Γ2 ⊂ R2 are the graphs of two smooth functions g1 : R 7→ R
and g2 : R 7→ R,

(ii) Γ1 ∩ Γ2 is reduced to a single point x0 = (a, b),
(ii) g ′

2(a) ̸= g ′
1(a) which implies that Γ1 and Γ2 are transverse at x0,

(iv) u is a measure supported by Γ1, it is given by u = ω1 dsΓ1
where dsΓ1

is the arc
length measure on Γ1, and the density ω1 of u is a smooth function,

(v) v is defined similarly with respect to Γ2.

The transversality between Γ1 and Γ2 at x0 implies Hörmander’s sufficient condition.
Indeed the wave front set of u is contained in the set of pairs (x , ξ) such that x ∈ Γ1 and ξ
is normal to Γ1 at x and the same property is valid for v . Therefore the product u v makes
sense. However Hörmander’s theorem is not needed to define u v . A straightforward
calculation yields the following result:

Lemma 1. If u and v satisfy the above five properties then the product u v makes sense
and is given by

u v = c δx0 , c = ω1(s1(a))ω2(s2(a))

√
1+ g ′

1(a)
2
√
1+ g ′

2(a)
2

|g ′
2(a) − g ′

1(a)|
(2)

where the values of the arc length on Γ1 and Γ2 at x0 = (a, b) are denoted by s1(a) and
s2(a).

If Γ1 and Γ2 are orthogonal at x0 and if ω1 = ω2 = 1 we have g ′
1(a)g

′
2(a) = −1 and

(2) simply reduces to u v = δx0 . Hörmander’s theorem gives the right perspective on
Lemma 1 since the transversality assumption g ′

2(a) ̸= g ′
1(a) of Lemma 1 is exactly

5
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Hörmander’s sufficient condition. Here is a sketch of the proof of Lemma 1. For
easing the notations one assumes ω1 = ω2 = 1. For ϵ ∈ (0, 1] one considers the

function uϵ(x) = ϵ
−1

√
1+ |g ′

1(x1)|
2χu,ϵ(x) where χu,ϵ is the indicator function of {x =

(x1, x2); g1(x1) ≤ x2 ≤ g1(x1) + ϵ}. The distributional limit of uϵ(x) as ϵ tends to 0 is
the arc measure dsΓ1

on Γ1. One defines χv ,ϵ(x) similarly. It now suffices to prove that
limϵ→0 ϵ

−2χu,ϵ(x)χv ,ϵ(x) = |g ′
2(a)−g ′

1(a)|
−1δx0 . Since g1 and g2 are smooth, it amounts

to computing the area of the parallelogram which is defined by {x ; g1(a)+(x1−a)g ′
1(a) ≤

x2 ≤ g1(a)+(x1−a)g ′
1(a)+ϵ} and {x ; g2(a)+(x1−a)g ′

2(a) ≤ x2 ≤ g2(a)+(x1−a)g ′
2(a)+ϵ}.

This area is given by |g ′
2(a) − g ′

1(a)|
−1
ϵ2 which ends the proof. Lemma 1 is used in our

constructions of crystalline measures.

3. Lighthouses

Lighthouses are the building blocks of our construction of crystalline measures. The-
orems 4 and 5 are the main tools of this construction. Under some natural assumptions
the pointwise product between two independent lighthouses is a crystalline measure
(Corollary 3 of Theorem 5). It remains to construct lighthouses. This is achieved in
Section 4.

Lighthouses do not exist in one dimension. Lighthouses become interesting if the
dimension n is larger than 1. A precise definition of a proper double cone is needed to
define a lighthouse. In what follows a proper double cone C is a non empty set with
the following properties:

(a) C ⊂ Rn is a closed set,
(b) x ∈ C , t ∈ R, implies tx ∈ C ,
(c) C ̸= Rn.

A double circular cone is defined by Cϵ,ξ0
= {x ; |x ·ξ0| ≥ (1−ϵ)|x |} for some ϵ ∈ [0, 1)

and some unit vector ξ0 ∈ Rn. We begin with the definition of a lighthouse on the torus
Tn = Rn/Zn. Let |E | denote the Lebesgue measure of a Borel set E ⊂ Tn. Here is our
first definition of a lighthouse.

Definition 4. A lighthouse on Tn is a pair (µ,S) consisting of a non negative Radon
measure µ on Tn and of a proper double cone S ⊂ Rn such that

(a) µ is supported by a compact set K s.t. |K | = 0.
(b)

∀k ∈ Zn, k /∈ S ⇒ µ̂(k) = 0. (3)

If (µ,S) is a lighthouse, then (µ,S ′) is still a lighthouse for any proper double cone
S ′ containing S . If (µ,S) is a lighthouse there exists a smallest proper double cone T
such that (µ,T ) is a lighthouse. Indeed one denotes by E the support of µ̂ and considers
the set F ⊂ Rn consisting of all tx , t ∈ R, x ∈ E . Since E ⊂ S we obviously have F ⊂ S .
Finally T is the closure of F . We have T ⊂ S and T is a proper double cone which ends
the proof. From now on we say that a non negative Radon measure µ is a lighthouse
(S is not yet mentioned) if there exists a proper double cone S such that the pair (µ,S)
satisfies (b). If it is the case the knowledge of S is not needed since the proper double
cone T is fully determined by µ and (µ,T ) satisfies (b).

6
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Definition 5. Let H ⊂ Rn be the proper double cone defined by x = (x1, ... , xn) ∈ H if
either x1 ≥ 0, ... , xn ≥ 0 or x1 ≤ 0, ... , xn ≤ 0. If µ is a non negative Radon measure on
Tn and if its Fourier coefficients vanish outside H then µ is called an Ahern measure.

An Ahern measure on Tn which is supported by a compact set of measure 0 is
a lighthouse. Ahern measures where introduced by P.R. Ahern in [1]. Ahern mea-
sures are implicit in the beautiful construction of crystalline measures achieved by
Kurasov and Sarnak [5]. For any A ∈ SL(n,Z) and any lighthouse (µ,S) the pair
((µ ◦ A−1), (A∗)−1(S)) is still a lighthouse. Using this remark it is easy to arbitrarily
move and shrink the proper double cone S around 0. This is why the name “lighthouse”
is used. Here is a proof of this remark if n = 2 and if S = H. Let a and c two rela-
tively prime integers. Bezout’s theorem implies that two integers c and d exist such

that ad − bc = 1. Let AN ∈ SL(2,Z) be defined by (A∗
N)

−1 =

(
a b + Na
c d + Nc

)
. Then the

proper double cone (A∗
N)

−1(H) is arbitrarily close to the line containing (a, c) if N is
large enough. Once a lighthouse is constructed it yields a family of lighthouses with
almost arbitrary proper double cones.

Definition 6. Let 2 ≤ m ≤ n. The proper double cones S1, ... , Sm are independent if
the following property holds: whenever m vectors x(1) ∈ Rn, ... , x(m) ∈ Rn satisfy

x(j) ∈ Sj , x(j) ̸= 0, 1 ≤ j ≤ m, (4)

then these vectors x(1), ... , x(m) are linearly independent.

If m = 2 this is Hörmander’s sufficient condition. If some unit vectors ξ(j), 1 ≤
j ≤ m, are linearly independent then the double circular cones Cϵ,ξ(j), 1 ≤ j ≤ m, are
independent when ϵ > 0 is small enough. If S1, ... , Sm are independent and if the proper
double cones Tj satisfy Tj ⊂ Sj then these Tj are still independent.

The following lemma is important for the construction of crystalline measures:

Lemma 2. Let 2 ≤ m ≤ n. If the proper double cones S1, ... , Sm are independent then
for any compact set B ⊂ Rn the mapping P : (S1 + B) × · · · × (Sm + B) 7→ Rn which
maps (x1, ... , xm) to x1 + · · ·+ xm is a proper map.

We argue by contradiction. Let us assume that there exist a constant C and m
sequences of vectors xj ,k ∈ Sj , k ∈ N, 1 ≤ j ≤ m, such that |x1,k + · · · + xm,k | ≤ C and
|x1,k | + · · · + |xm,k | → ∞ with k . Let q(k) ∈ [1,m] be defined by |xq(k),k | = supj |xj ,k |.
We consider x ′

j ,k = xj ,k/|xq(k),k |. Then x ′
j ,k ∈ Sj and there exists a subsequence of the

sequence x ′
j ,k tending to zj as k tends to ∞. We have zj ∈ Sj since Sj is closed. Finally

z1 + · · ·+ zm = 0 and |zq | = 1 which contradicts the independence of the proper double
cones. It implies the following result which is seminal in our construction of crystalline
measures:

Corollary 2. Let 2 ≤ m ≤ n. If the proper double cones S1, ... , Sm are independent, if
B ⊂ Rn is a compact ball and if Ej ⊂ Sj + B, 1 ≤ j ≤ m, are m locally finite sets, then
E1 + · · ·+ Em is a locally finite set.

Definition 7. Let 2 ≤ m ≤ n. The lighthouses (u1,S1), ... , (un,Sm) are independent if
the proper double cones S1, ... , Sm are independent.

7
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Once more it is unnecessary to specify the proper double cones Sj in this definition
since they can be replaced by the smallest proper double cones Tj . Our construction of
crystalline measures relies on the generalization to Rn of the following theorem. This
generalization is detailed in Theorem 5.

Theorem 4. Let 2 ≤ m ≤ n. Let uj , ... , um be m independent lighthouses on Tn. Then
the pointwise product µ = u1 · · · um exists and is a positive measure. Moreover the
support of µ is contained in the intersection

⋂m
1 Kj where Kj is the closed support of µj .

This is still valid if uj , ... , um are m weak lighthouses on Tn and are independent. The
second assertion of Theorem 4 is obvious and does not use the spectral properties of
lighthouses. Theorem 4 and its companion Theorem 5 are seminal to our construction
of crystalline measures. Theorem 4 is not used in this note and Theorem 5 is only used
for m = 2. If m = 2 Theorem 4 is an immediate corollary of Hörmander’s theorem on
the product between two distributions. Indeed if S and T are two independent proper
double cones, if û is supported by S , and if v̂ is supported by T then Hörmander’s
theorem implies that the pointwise product uv exists and is a distribution. If one
is ready to accept that u ≥ 0 and v ≥ 0 imply uv ≥ 0 the proof ends by the fact
that a positive distribution is a measure. We denote the Fejer kernel in two variables
by GN(x). To prove that u ≥ 0 and v ≥ 0 imply uv ≥ 0 we consider uN = GN ∗ u
and vN = GN ∗ v . Then uN and vN are two non negative trigonometric polynomials.
Therefore the pointwise product uNvN is a non negative trigonometric polynomial. We
have uN ⇀ u in the distributional sense and ûN is supported by S . Similarly vN ⇀ v
and v̂N is supported by T . Then the proof of Hörmander’s theorem yields uNvN ⇀ uv
in the distributional sense. Therefore uv is positive. It ends the proof. If the definition
of a lighthouse (µ,S) was modified and if the measure µ whose Fourier transform is
supported by a double cone S was allowed to be a signed measure then the pointwise
product µ = u1 · · · um betweenm independent lighthouses would not be a signed measure
in general. This product would exist by Hörmander’s theorem but would be a tempered
distribution (see Section 8).

A pedestrian proof of Theorem 4 which does not use Hörmander’s theorem is given
in Section 9. If (uj ,Sj), 1 ≤ j ≤ m, are m independent lighthouses then the total
mass of µ is the product of the total masses of the uj . If each uj , 1 ≤ j ≤ n, is a
probability measure, so is µ. If the proper double cones Sj are not independent the
pointwise product u1 · · · un does not exist even in the distributional sense. Theorem 4
also fails if the number of independent lighthouses is larger than n. As it was already
mentioned Theorem 4 fails miserably if uj are signed measures as it will be shown in
Section 8. Let us give the simplest example of Theorem 4. Let Γj ⊂ Tn be defined
by Γj = {x = (x1, ... , xn) ∈ Tn; xj = 0} and let uj be the Haar measure on Γj . Let
Sj ⊂ Rn be defined by Sj = {x = (x1, ... , xn) ∈ Rn; xi = 0 ∀i ̸= j}. Then ûj(k) = 1 if
k ∈ Sj ∩Zn while ûj(k) = 0 elsewhere. Therefore (uj ,Sj) is a trivial lighthouse and these
(uj ,Sj), 1 ≤ j ≤ n, are independent lighthouses. Then the pointwise product u1 · · · un is
the Dirac measure δ0.

We now define lighthouses on Rn.

8
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Definition 8. A lighthouse on Rn is a pair (µ,S) consisting of a positive measure µ
on Rn and of a proper double cone S ⊂ Rn such that:

(i) The measure µ is a tempered distribution.
(ii) The measure µ is supported by a closed set F such that |F | = 0.
(iii) The distributional Fourier transform µ̂ of µ is supported by S .

Let us observe that (i) is equivalent to the following growth condition: there exists
a constant C and an exponent q such that µ(BR) ≤ CRq for any R ≥ 1 where BR is the
ball of radius R centered at 0. Here again if (µ,S) is a lighthouse and if a double cone
S ′ contains S then (µ,S ′) is also a lighthouse. If (µ,S) is a lighthouse there exists a
smallest double cone T such that (µ,T ) is a lighthouse. As above a lighthouse µ will
often be defined as a non negative Radon measure on Rn supported by a closed set F
of Lebesgue measure zero and such that there exists a double cone S ⊂ Rn for which
(µ,S) is a lighthouse. As it was said above the smallest such double cone is uniquely
determined by µ. A weak lighthouse is defined similarly: the positive measure µ is
supported by a closed set F s.t. |F | = 0 and there exists a compact set K such that the
distributional Fourier transform µ̂ of µ is supported by S ∪ K . The simplest example
of a lighthouse on Rn is given by a lighthouse on Tn viewed as a Zn periodic measure.
The distributional Fourier transform of a lighthouse µ can be an atomic measure, it is
the case allover in this essay. It can also be a tempered distribution but surprisingly it
cannot be a continuous function on Rn.

The total mass of a lighthouse (µ,S) on Rn is infinite. Indeed if µ was a bounded
measure we would have µ̂(0) = c > 0. Since µ̂ is a continuous function it implies
|µ̂(y)| ≥ c/2 if |y | ≤ r for some r > 0. This prevents µ̂ from being supported by the
double cone S . The definition of independent lighthouses is the same as in the periodic
case.

Here is a simple example of a two dimensional lighthouse.

Lemma 3. Let E ⊂ R be a locally finite set and σ =
∑

u∈E c(u)δu be a positive atomic
measure supported by E . Let λ be the Lebesgue measure on the line. Then µ = σ⊗ λ is
a two dimensional lighthouse.

The measure µ is supported by a countable union F of vertical lines. We have
F = {x = (x1, x2); x1 ∈ E } and |F | = 0. The support of the distributional Fourier
transform of µ is contained in the horizontal axis. The horizontal axis of R2 is a trivial
double cone. It ends the proof. We now reach the main result of this paper:

Theorem 5. Let 2 ≤ m ≤ n. Let (uj ,Sj), ... , (um,Sm) be m independent lighthouses on
Rn. Then the pointwise product µ = u1 · · · um is a positive measure. The support of µ
is contained in the intersection ∩m

1 Fj where Fj is the closed support of µj . Moreover if
each ûj , 1 ≤ j ≤ m, is an atomic measure supported by a locally finite set then the same
is true for µ̂.

This is still valid if (uj ,Sj), ... , (um,Sm) are m independent weak lighthouses on Rn.
Here again if the definition of a lighthouse (µ,S) was modified and if the measure µ
whose Fourier transform is supported by a double cone S was allowed to be a signed

9
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measure then the pointwise product µ = u1 · · · um between m independent lighthouse
measures would not be a signed measure in general. This product would exist by
Hörmander’s theorem as a tempered distribution (see Section 8).

Corollary 3. Let (u1,S1), ... , (um,Sm) be m independent lighthouses on Rn such that
each ûj , 1 ≤ j ≤ m, is an atomic measure supported by a locally finite set. If µ = u1 · · · um
is an atomic measure supported by a locally finite set then µ is a crystalline measure.

As it was announced in the abstract all our previous constructions of two dimensional
crystalline measures follow from this corollary. Here is a trivial example of Theorem
5. Let σ and τ be two positive crystalline measures on the line. With the notations of
Lemma 3 let µ = σ⊗ λ and ν = λ⊗ τ. Then µ and ν are two independent lighthouses
and we have µν = σ⊗τ. Trivial examples of two dimensional crystalline measures follow
from Theorem 5. Up to some technicalities the proof of Theorem 5 is the same as the
one of Theorem 4. We limit the discussion to m = 2. Let us assume that (u,S) and
(v ,T ) are two independent lighthouses. Then Hörmander’s theorem implies that the
pointwise product uv is a tempered distribution. We now use the same argument as
in Theorem 4 and conclude that this distribution is a positive measure which ends the
proof. A pedestrian proof is given in Section 9. The second assertion of Theorem 5
follows from Lemma 2’s corollary.

4. Inner functions and Ahern measures

The goal of this section is to relate Ahern measures to inner functions and to use
this connection in the construction of Ahern measures. Once an Ahern measure is
constructed it will be moved and rotated to obtain independent lighthouses. These
lighthouses are the building blocks of our construction of crystalline measures (Sections
5 and 6). A leisurely promenade leading to Theorem 8 is proposed in this section. This
pleasant promenade can be replaced by a short cut and the reader can move directly to
Theorem 8. Indeed our construction of Ahern measures relies on Theorem 8 and does
not depend on Theorem 6 and Theorem 7. Finally Theorem 8 is given a trivial proof
at the end of this section.

The open polydisc Dm ⊂ Cm is defined by |zj | < 1, 1 ≤ j ≤ m. The m dimensional
torus Tm is defined by |zj | = 1, 1 ≤ j ≤ m. Then Tm is the distinguished boundary of
Dm. We have Tm ≃ Tm and this isomorphism is given by the canonical map defined
by θ = (θ1, ... , θm) 7→ z = (exp(2πiθ1), ... , exp(2πiθm)). P.R.Ahern and Walter Rudin
proved that Ahern measures are related to inner functions in the polydisc [1], [15]. Let
µ be a positive singular Radon measure on Tm. Then Ahern wrote: If the Poisson
integral of µ is the real part of an holomorphic distribution F in the polydisc then
G (z) = exp(−F (z)) is a singular inner function in the polydisc and any singular inner
function in the polydisc is obtained from this construction. We give up this road and
construct Ahern measures using a completely different approach which is described
now. The algebra of bounded holomorphic function in Dm is denoted by H∞(Dm). If
f ∈ H∞(Dm), then its trace limr↑1 f (rz) = f (z) exists for almost all z ∈ Tm. A function
f ∈ H∞(Dm) is often identified to its trace on Tm and we then write f ∈ H∞(Tm).

10
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Definition 9. We say that f ∈ H∞(Dm) is an inner function if its trace on Tm satisfies
|f (z)| = 1 almost everywhere. A constant of modulus 1 is a trivial inner function.

The space of distributions on Tm is denoted by D ′(Tm). The Fourier coefficients
τ̂(k), k ∈ Zm, of τ ∈ D ′(Tm) have a polynomial growth at infinity.

Definition 10. Let S+
0 ⊂ Zm be defined by k1 ≥ 0, ... , km ≥ 0. A distribution τ ∈

D ′(Tm) is holomorphic if τ̂ = 0 on Zm \ S+
0 .

If F is holomorphic in Dm and 0 ≤ r < 1 we define Fr on Tm by Fr (z) = F (rz). Then
τ ∈ D ′(Tm) is holomorphic if and only if there exists a holomorphic function F in Dm

such that limr↑1 Fr = τ in the distributional sense. This yields a new definition of Ahern
measures.

Definition 11. A positive measure on Tm is a Ahern measure if it is the real part of
a holomorphic distribution.

As above S−
0 ⊂ Zm is defined by k1 ≤ 0, ... , km ≤ 0 and H = S+

0 ∪ S−
0 .

Lemma 4. Let τ ∈ D ′(Tm) be a holomorphic distribution. Let τ0 be the real part of τ
and τ1 the imaginary part. Then τ̂0 = 0 on Zm \H, the same is true for τ̂1, τ̂1 = −i τ̂0
on S+

0 , and τ̂1 = i τ̂0 on on S−
0 .

This well known lemma follows from Definition 11 and from the hermitian symmetry
of τ̂0.

Definition 12. Let ν be a positive Radon measure on T and let
∑

k∈Z ckz
k be the

Fourier series expansion of ν. Let J be a non trivial inner function on Tm. Then the
Ahern measure ν ◦ J is defined by

ν ◦ J =
∑
k∈Z

ckJ
k . (5)

It is shown now that if r ∈ [0, 1), r → 1, the function
∑

k∈Z ck r
|k|Jk converges in

the distributional sense to a Ahern measure on Tm. This is given by the proof of the
following theorem:

Theorem 6. Let ν be a positive Radon measure on T and let J be a non trivial inner
function on Tm. Then ν ◦ J is an Ahern measure on Tm and

∥ν ◦ J∥ ≤ 1+ |J(0)|

1− |J(0)|
∥ν∥. (6)

More generally let ν be an Ahern measure on the polydisc Tq and let J1, ... , Jq be q
non trivial inner functions on Tm. We set J = (J1, ... , Jq) : T

m 7→ Tq. Then ν ◦ J is an
Ahern measure on Tm and

∥ν ◦ J∥ ≤ (
1+ |J1(0)|

1− |J1(0)|
) · · · (1+ |Jq(0)|

1− |Jq(0)|
)∥ν∥. (7)

Theorem 6 yields a definition and an estimate. Let us begin with the estimate.
If J(0) = 0 it is given by the following lemma which is a classical result by Charles
Loewner.

11
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Lemma 5. Let J be an inner function on Tm such that J(0) = 0 and let g be a
continuous function on T. Let dλm be the Haar measure on Tm. Then∫

Tm

g ◦ J dλm =

∫
T

g dλ1. (8)

By linearity and density it suffices to prove (8) if g(z) = zk , k ∈ Z. If k ≥ 1 we have∫
Tm J

kdλm = J(0)k = 0. If k ≤ −1 we have Jk = J
|k|

and
∫
Tm J

kdλm = 0. Finally (8)
is trivial if k = 0. Lemma 5 is proved. It yields (6) if J(0) = 0 and if ν is absolutely
continuous with respect to dλ1 with a continuous density. If m = 1 and if J(0) ̸= 0 we

follow Aline Bonami and write J = h ◦ J0 where h(z) = J(0)−z

1−zJ(0)
and J0(0) = 0. Then

(6) follows from (8) applied to g ◦ h. Finally Theorem 6 is proved if m = 1.

We return to Theorem 6 and prove the first assertion. We denote by ν =
∑

k∈Z ckz
k

the Fourier series expansion of ν. For 0 ≤ r < 1 we denote by Pr (z) = 1−r2

|1−rz|2
the

Poisson kernel. Let ν(r , z) = ν ∗ Pr . We have ν(r , z) =
∑

k∈Z r
|k|ckz

k , z ∈ T. Since ν
is a positive measure and Pr is a positive kernel we have ν(r , z) ≥ 0. We set νJ(r , z) =∑

k∈Z r
|k|ckJ

k(z). Since 0 ≤ r < 1 this series converges uniformly on Tm. Indeed |ck | ≤
∥ν∥ and ∥J∥∞ = 1. For almost every z ∈ Tm we have |J(z)| = 1 since J is an inner
function. Therefore νJ(r , z) = ν(r , J(z)) which implies νJ(r , z) ≥ 0. Let dλm be the
Haar measure on Tm. We have∫

Tm

νJ(z , r)dλm =
∑
k∈Z

r |k|ck Ik (9)

where Ik =
∫
Tm J

kdλm = J(0)k if k ≥ 0 and Ik = J(0)
|k|

if k ≤ −1. But we have
|J(0)| < 1 otherwise J would be a constant. This yields∫

Tm

νJ(z , r)dλm ≤ 1+ |J(0)|

1− |J(0)|
∥ν∥. (10)

This uniform estimate implies that there exists a sequence rj → 1 such that νJ(z , rj)
converges weakly to a positive measure on Tm. We denote by ν◦J this positive measure
and prove that it does not depend on the choice of the sequence rj . Let us consider
the holomorphic function F (z , r) =

∑
k∈N ck r

kJ(z)k . We have F (z , r) ∈ H∞(Tm) and
νJ(z , r) = 1+2ℜF (z , r). Then it suffices to prove that F (z , r) converges in the distribu-

tional sense as r → 1. Since the L1 norms of νJ(z , r), r ∈ [0, 1), do not exceed 1+|J(0)|
1−|J(0)|∥ν∥

Lemma 4 implies that the set consisting of the functions F (z , r), r ∈ [0, 1), is bounded in
the space D ′(Tm). Then it suffices to study the convergence of F (z , r) in the polydisc to
conclude to the convergence in the space D ′(Tm). Now z ∈ T is replaced by ζ ∈ Dm. We
have |J(ζ)| < 1 otherwise J would be a constant. Then F (ζ, r) =

∑
k∈N ck r

kJ(ζ)k con-

verges to
∑

k∈N ckJ(ζ)
k as r → 1. It ends the proof. The proof of the second assertion

is similar.

Corollary 4. If f ∈ H∞(Tm) is a non trivial inner function then the limit limr↑1 1+rf
1−rf

exists in the distributional sense. This limit is a holomorphic distribution τ ∈ D ′(Tm).

12
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The real part of τ is an Ahern measure on Tm which is denoted by µf . We then write

µf = ℜ (
1+ f

1− f
). (11)

Moreover we have

∥µf ∥ = ℜ (
1+ f (0)

1− f (0)
). (12)

This is Theorem 6 with ν = δ0.

The main ingredient in the construction of crystalline measures of Sections 6, 7 and
8, is an Ahern measure supported by a smooth hypersurface. It raises the following
question: can ν ◦ J be a singular measure? The measure ν ◦ J is defined by Theorem 6.

Conjecture 1. Let J ∈ H∞(Tm) be a non trivial inner function. Then the measure
νJ of Theorem 6 is singular with respect to the Haar measure on Tm if and only if ν is
singular with respect to the Haar measure on T.

This is true if ν is supported by a compact set of measure 0 and if J is smooth as it
is proved now. A function f belongs to the polydisc algebra A(Dm) if f is continuous on
the closure of Dm and holomorphic on Dm. As above a function in the polydisc algebra
will be identified to its trace on Tm. Walter Rudin and E.L. Stout proved that any inner
function f ∈ A(Dm) is a rational function: f = Q/P where P and Q are two polynomials
and P does not vanish on Dm. Moreover we have Q(z) = M(z)P∗(1/z) where M is a
monomial and the coefficients of the polynomial P∗ are conjugates of the coefficients of
P ([5]). Finally 1/z = (1/z1, ... , 1/zm).

Lemma 6. Let J be a smooth inner function and let K be the compact support of ν.
Then ν ◦ J is supported by U = {x ; J(x) ∈ K }.

This is given by the proof of Theorem 6. We now end the proof of the conjecture
in the smooth case. If f is a continuous inner function then the set U = {x ; f (x) ∈ K }

is a closed subset of Tm. Moreover Theorem 6 implies that the Lebesgue measure |U |

of U is 0. Indeed let us define a function gϵ on T by gϵ(z) = 1 on K , 0 ≤ gϵ ≤ 1, and
gϵ(z) = 0 if the distance from z to K exceeds ϵ. Then the integral

∫
gϵ tends to 0 with

ϵ. Theorem 6 implies that the Lebesgue measure of U does net exceed Cϵ. This holds
for any positive ϵ and |U | = 0. Therefore ν ◦ H is singular with respect to the Haar
measure on Tm.

Let f ∈ C∞(Tm) be an inner function. Let ϕ(x), x ∈ Tm, be the phase of f (x). More
precisely ϕ(x) is defined as a real valued continuous function on Rm such that

f (x) = exp(2πiϕ(x)), x ∈ Rm. (13)

Then there exists a q ∈ Zm such that ϕ satisfies the functional equation:

ϕ(x + k) = ϕ(x) + q · x , k ∈ Zn. (14)

In other terms ϕ(x) = q · x + ψ(x) where ψ is a real valued Zm-periodic function.
Finally ϕ is a C∞ function. We now identify Tm with Tm and observe that ϕ can also
be viewed as a T valued smooth function defined on Tm. A simple corollary of Theorem
6 is the following result:

13
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Theorem 7. Let f ∈ C∞(Tm) be an inner function. Let x0 ∈ Tm and b = f (x0). Let
us assume that ∇f (x) ̸= 0 everywhere on the level set Ub = {f (x) = b}. Then we have

(a) The limit limr↑1 b+rf
b−rf exists in the distributional sense and is a holomorphic

distribution denoted by b+f
b−f .

(b) ℜ( b+f
b−f ) = µf is an Ahern measure carried by the level set

Ub = {f (x) = b}. (15)

(c) The measure µf is absolutely continuous with respect to the surface measure
dσUb

on Ub and we have µf = |∇f |−1 dσUb
.

To prove Theorem 7 it suffices to use Theorem 6 with ν = δb. Instead of proving (c)
in full generality, let us treat an example which suffices to achieve our program.

Theorem 8. Let f be a smooth inner function on Tm. Let ϕ : Rm 7→ T be the phase of
f as defined by (13) and (14). Let Uf ⊂ Tm+1 be the graph of the function −ϕ : Tm 7→ T.
Let µf be the measure on Tm+1 which is the image of the Haar measure on Tm by the
mapping x 7→ (x ,−ϕ(x)). Then µf is an Ahern measure on Tm+1.

To prove Theorem 8 we consider the auxiliary inner function f̃ defined on Tm+1 by

f̃ (x1, ... , xm, xm+1) = exp(2πixm+1)f (x1, ... , xm). (16)

If complex coordinates were used f̃ would be defined on Tm+1 by

f̃ (z1, ... , zm, zm+1) = zm+1f (z1, ... , zm).

Properties (a) and (b) are already known if f is a continuous inner function. After
multiplying f by b we can then assume b = 1. For proving Theorem 8 it suffices to use

Theorem 6 with f̃ instead of f and Tm+1 instead of Tm. Let Pr (t) =
1−r2

1−2r cos(2πt)+r2
, 0 ≤

r < 1, be the Poisson kernel. Then

ℜ(
1+ r f̃

1− r f̃
) = Pr (xm+1 + ϕ(x1, ... , xm)). (17)

But the weak limit, as r → 1, of the Poisson kernel Pr is the Dirac measure at 0. It
implies that the weak limit as r → 1 of the functions Pr (xm+1+ϕ(x1, ... , xm)) is precisely
the measure µf . Now Theorem 6 can be applied and µf is an Ahern measure on Tm+1.

Here is a direct and simple proof of Theorem 8. Let us assume that exp(−2πiϕ) is
an inner function and prove that µf is an Ahern measure. We have

µ̂f (k) =

∫
Tm−1

exp(−2πikmϕ) exp(−2πi(k1x1 + · · ·+ km−1xm−1))dx .

We know that the function U = exp(−2πiϕ) is an inner function. Therefore exp(−2πikmϕ) =
Ukm is also an inner function if km ≥ 0. It implies µ̂f (k) = 0 unless k1 ≥ 0, ... , km−1 ≥ 0.
Since µ̂f (−k) = µ̂f (k) the proof is complete. The converse implication is as easy.
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5. The first construction of a two dimensional crystalline measure

In this section it is shown that the construction of two dimensional crystalline mea-
sures of [13] follows from Theorem 5. As it was done in [13] we start with a building
block σr , (0 < r < 1) which is an Ahern measure on T2. Then this measure can also
be viewed as a Z2-periodic measure on R2. Once σr is constructed we move it around
0 using two automorphisms A and B of R2 and obtain two independent lighthouses σA
and σB on R2. Then we check that the pointwise product µ = σAσB is a sum of Dirac
measures on a Delone set. Finally Theorem 5 implies that this product is a crystalline
measure. Here are the details of this construction.

Let r ∈ [0, 1). Let ϕr : R 7→ R be the odd and decreasing function of the real variable

θ defined by ϕr (0) = 0 and dϕr

dθ = − 1−r2

1+r2−2r cos(2πθ)
. We have ϕr (θ + 1) = ϕr (θ) − 1

and exp(−2πiϕr ) =
exp(2πiθ)−r
1−r exp(2πiθ) . Let us observe that U(z) = z−r

1−rz is a Blaschke factor.

The function ψr (θ) = ϕr (θ) + θ is periodic of period 1 and together with its derivative
tends uniformly to 0 as r tends to 0. Indeed ∥ψr∥∞ ≤ r/2 and ∥ d

dθψr∥∞ ≤ 2r/(1− r). A
finite Blaschke product U(z) could be used as well instead of a Blaschke factor and the
continuous function ϕU would then be defined by exp(−2πiϕU(θ)) = U(exp(2πiθ)). We
return to the construction of σr . Let Γm ⊂ R2,m ∈ Z, be the curve in the plane defined
by x2 = ϕr (x1) + m or equivalently by x2 = ψr (x1) − x1 + m and let C =

⋃
m∈Z Γm be

the union of these disjoint curves. The curve Γm is contained in the strip Wm defined
by |x1 + x2 −m| ≤ r/2. Since 0 ≤ r < 1 these strips are pairwise disjoint. It implies the
following:

Lemma 7. If x ∈ Γm, y ∈ Γl and l ̸= m we have |x − y | ≥ 1−r√
2
.

Definition 13. The measure σ(r ,m) on Γm is defined as the image of the Lebesgue
measure dx1 on the real axis by the map x1 7→ (x1,ϕr (x1) +m).

For any compactly supported continuous function f on R2 we have

⟨σ(r ,m), f ⟩ =
∫
R
f (x1,ϕr (x1) +m)dx1. (18)

Then σ(r ,m)(x1 + 1, x2 − 1) = σr ,m)(x1, x2).

Definition 14. Let σr =
∑+∞

−∞ σ(r ,m).

From now on the index r is dropped: we write σ instead of σr . The value of r ∈ (0, 1)
does not play any role in what follows. The measure σ is Z2-periodic and is supported
by C. Let B ⊂ Z2 be defined by k1 ≥ 0, k2 ≥ 0 or k1 ≤ 0, k2 ≤ 0. Then we have:

Lemma 8. The Fourier coefficients σ̂(k) of σ vanish if k /∈ B. Therefore σ is a Ahern
measure.

This is given by Theorem 8 which is applied to the inner function U(z) = z−r
1−rz .

The measure σA is defined as the image measure of σ by an automorphism A of R2 and
similarly σB is the image measure of σ by B. The matrices of these linear automorphisms
are also denoted by A and B. Here is the definition of A and B which will be used below.

Let us consider A =

(
b2 −b1
−a2 a1

)
and B =

(
b4 −b3
−a4 a3

)
where
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(i) a1 > 0, a2 > 0, a3 > 0, a4 > 0,
(ii) b1 > 0, b2 > 0,
(ii) b3 < 0, b4 < 0,
(iv) detA = a1b2 − a2b1 = 1,
(v) detB = a3b4 − a4b3 = 1.

It implies (A∗)−1 =

(
a1 a2
b1 b2

)
and (B∗)−1 =

(
a3 a4
b3 b4

)
.

The distributional Fourier transform of σA is σ̂◦A∗. The support of σ̂◦A∗ is contained
in (A∗)−1(H) = HA. This HA ⊂ H is a narrower sector defined by 0 < c ≤ x2/x1 ≤ C
where C > c > 0. Similarly The distributional Fourier transform of σB is σ̂ ◦ B∗ and is
supported by (B∗)−1(H) = HB ⊂ S . This sector HB is defined by 0 < c ′ ≤ −x2/x1 ≤ C ′.
Let us observe that HA ∩ HB = {0}. Since HA and HB are symmetric with respect to 0
this is Hörmander’s sufficient condition.

Lemma 9. The pairs (σA,HA) and (σB ,HB) are two independent lighthouses.

For instance if θ > 1 and a1 = θ, a2 = θ − 1, b1 = θ + 1, b2 = θ, the sector HA is
delimited by the lines x2 = θ

θ−1
x1 and x2 = θ+1

θ
x1. The aperture of HA is O(θ−2) and

tends to 0 as θ tends to ∞. Similarly if θ ′ > 1 and a3 = θ ′ + 1, a4 = θ ′, b3 = −θ ′, b4 =

−θ ′ + 1, the sector HB is delimited by the lines x2 = − θ ′

θ ′+1
x1 and x2 = −θ ′−1

θ ′ x1. The

aperture of HB is O(θ ′−2) and tends to 0 as θ ′ tends to ∞.

We can assume that

(A∗)−1(Z2) ∩ (B∗)−1(Z2) = {0}. (19)

Indeed this is equivalent to the following condition: the vectors (a1, b1), (a2, b2),
(a3, b3) and (a4, b4) are Q-linearly independent. Let us observe that (19) is equivalent
to A(Z2) ∩ B(Z2) = {0}. In our example it amounts to say that 1, λ, λ ′ are Q-linearly
independent. This example suffices to our construction.

Lemma 10. For any k ∈ Z and for any l ∈ Z the curve A(Γk) is transverse to the
curve B(Γl).

More precisely we have:

Lemma 11. Each curve A(Γk) is the graph of a decreasing function gk,A such that
g ′
k,A ≤ −β and each curve B(Γk) is the graph of an increasing function hk,B such that
h ′
k,A ≥ β. The positive number β only depends on A,B, and r .

Indeed the curve A(Γk) admits a parametric representation given by x1 = b2t−b1ϕ(t)
and x2 = −a2t + a1ϕ(t), t ∈ R. Then x1 is an increasing function of t and this function
defines a diffeomorphism of R. Next x2 is a decreasing function of t. Finally x2 is a
decreasing function of x1. Moreover gk,A : R 7→ R is a diffeomorphism. The second
assertion of is similar. Therefore the intersection A(Γk) ∩ B(Γl) is reduced to a point
denoted by γk,l .

Lemma 12. The set Λ = {γk,l ; k ∈ Z, l ∈ Z} is a Delone set.
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Before proving Lemma 12 let us observe that Λ = Λ(A,B, r) depends on A,B, and
r . We first prove that Λ is uniformly discrete and then that Λ is relatively dense. If
x , y ∈ Λ are distinct two cases can occur. Either x ∈ A(Γk), and y ∈ A(Γl) with k ̸= l
or x ∈ B(Γk), and y ∈ B(Γl) with k ̸= l . In the first case |x − y | ≥ cB > 0 by Lemma 7.
The second case is similar.

We now prove that Λ is relatively dense. Let Lm be the line defined by x1 + x2 = m.
Let us write e = (1, 1), f = (A∗)−1(e), g = (B∗)−1(e) and let us denote by M the lattice
generated by f and g. Let M∗ be the dual lattice of M. Then M∗ is also the set of all
intersections γ̃k,l = A(Lk) ∩ B(Ll), k , l ∈ Z.

Lemma 13. Let r ∈ [0, 1). There exists a constant C depending only on the matrices
A and B such that for any k , l ∈ Z we have

|γk,l − γ̃k,l | ≤ Cr . (20)

Since M∗ is a lattice Lemma 13 implies that Λ is relatively dense. Moreover Λ is
a small perturbation of M∗ if r is small. Let us prove Lemma 13. We already know
that the curve Γm is contained in the strip Wm defined by |x1 + x2 − m| ≤ r/2. Let
us consider the intersection K (k , l) = A(Wk) ∩ B(Wl). The center of the parallelogram
K (k, l) is γ̃k,l . The diameter of this parallelogram K (k, l) does not exceed Cr since the
width of Wk does not exceed r . Therefore K (k , l) ⊂ B(γ̃k,l ,Cr) where B(x ,R) denotes
the ball centered at x with radius R. Moreover γk,l = A(Γk) ∩ B(Γl) belongs to K (k, l).
It implies |γk,l − γ̃k,l | ≤ Cr and Lemma 13 is fully proved. One can observe that
K (k, l) = γ̃k,l + K (0, 0).

The pushforward measure σA = σ ◦A−1 (the image measure of σ by A) is carried by
A(C) and is periodic with respect to the lattice ΛA = A(Z2). Similarly the pushforward
measure σB = σ ◦ B−1 is carried by B(C) and is periodic with respect to the lattice
ΛB = B(Z2).

Definition 15. The atomic measure µ is defined as the pointwise product between these
two image measures σA and σB .

Theorem 9. This product measure µ = σA σB is a crystalline measure.

Theorem 9 follows from Corollary 3 of Theorem 5. It can also be proved directly
using the transversality between the curves A(Γk) and B(Γl). The support of µ is the
Delone set Λ = {γk,l ; k ∈ Z, l ∈ Z} and we have µ =

∑
c(k, l)δγk,l

. If γk,l = (αk,l ,βk,l)
then

c(k , l) = (h ′
l ,B(αk,l) − g ′

k,A(αk,l))
−1 > 0 (21)

where g ′ denotes the derivative of g and h ′ denotes the derivative of h.

Let us observe that one could use the function ϕr for defining the curves A(Γk) and
a different function ϕs for defining the curves B(Γl). One could use as well the phases
of two arbitrary Blaschke products. Then the spectrum of µ is always contained in the
locally finite set HA∩ΛA∗ +HB ∩ΛB∗ which does not depend on the two inner functions
which are used in the construction. The measure µ and its support Λ obviously depend
on these inner functions.
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6. The second construction

In this second construction a lighthouse (w ,T ) is constructed directly without using
an Ahern measure [9]. Then Theorem 5 is used again to construct a crystalline measure.
Here are the details of these two steps. Let T be the double cone defined by

T = {k ∈ Z2; |k2| ≤ |k1|}. (22)

The core of the second construction is the following lemma:

Lemma 14. There exists a lighthouse (w ,T ) on T2 enjoying the following properties:

(a) w is a probability measure supported by the disjoint union Γ ⊂ T2 of two closed
smooth curves.

(b) w is absolutely continuous with respect to the arc length measure on Γ.

Before detailing this construction let us show that it immediately yields one dimen-
sional and two dimensional crystalline measures. Let α ∈ (0,π/4) and let Lα be the
line defined by the parametric representation x1 = t cosα, x2 = t sinα, t ∈ R. The
Lebesgue measure on Lα defines a two dimensional Radon measure λα by ⟨λα, g⟩ =∫
R g(t cosα, t sinα) dt for any compactly supported continuous function g . Then the

distributional Fourier transform of λα is λ(α+π/2). Therefore (λα, L(α+π/2)) is a trivial

lighthouse. The lighthouse (w ,T ) on T2 can be viewed as a lighthouse (τ,T ) on R2, τ
being the Z2 periodic version of w . One considers the pointwise product between τ and
λα.

Lemma 15. The pointwise product ρ = τλα is a one dimensional crystalline measure
on the line Lα.

The definition of this pointwise product is given by Theorem 5. It can also be
verified directly using the properties of Γ. Let us take for granted that ρ is an atomic
measure supported by a locally finite set. This will be obvious once Γ is defined. The two
dimensional distributional Fourier transform of ρ is the convolution productω∗λ(α+π/2)

between the atomic measure ω =
∑

k∈Z2 ŵ(k)δk and λ(α+π/2). The one dimensional
Fourier transform of ρ is defined using the parametric representation of Lα. This one
dimensional Fourier transform of ρ is the atomic measure

∑
k∈Z2 ŵ(k)δ(k1 cosα+k2 sinα)

which is the restriction to Lα of the two dimensional Fourier transform ρ̂. The support
of

∑
k∈Z2 ŵ(k)δ(k1 cosα+k2 sinα) is locally finite since the line L(α+π/2) is transverse to

T . This ends the proof. The same scheme yields all the crystalline measures which were
named “curved model sets” in [12].

We now follow [9] and construct some two dimensional crystalline measures. This
time we start from a positive one dimensional crystalline measure ν and consider the
tensor product ν2 = ν ⊗ dx2. The one dimensional Fourier transform of ν is ν̂ =∑

y∈F a(y)δy . Then the two dimensional Fourier transform of ν2 is ν̂ =
∑

y∈F a(y)δ(y ,0).

We rotate ν2 around 0 with an angle α ∈ (π/4, 3π/4) and obtain the measure ν2,α which
is a trivial lighthouse. As above the sharp lighthouse (w ,T ) on T2 can be viewed as a
lighthouse (τ,T ) on R2, τ being the Z2 periodic version of w . With these notations we
have:

Theorem 10. The pointwise product ν2,ατ is a two dimensional crystalline measure.
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Once more this is given by Corollary 3 of Theorem 5.

Following the recipe given in [9] we now prove Lemma 14 and construct w . Let
r ∈ [0, 1] and let θr be the 1-periodic continuous function defined on T by cos(2πθr (x)) =
r cos(2πx) and 0 ≤ θr (x) ≤ 1/2. We have θ0(x) = 1/4 identically and θ1(x) = |x | if
−1/2 ≤ x ≤ 1/2. The function θr is analytic if 0 ≤ r < 1. The derivative of θr (x) is

d θr
dx

=
r sin(2πx)√

1− r2 cos2(2πx)
(23)

We have θr (1/2− x) + θr (x) = 1/2 and ∥θr − 1/4∥∞ < r/4 if 0 ≤ r < 1. The following
lemma is seminal in our construction:

Lemma 16. The 1−periodic function cos(2πmθr (x)),m ∈ N, is a trigonometric poly-
nomial. More precisely we have

cos(2πmθr (x)) =
m∑

k=0

αr (k ,m) cos(2πkx). (24)

The proof is elementary [9]. We extend αr (k,m) to N2 by setting αr (k,m) = 0 if
k /∈ [0,m]. A first curve Γ+ ⊂ T2 is defined by x1 = θr (x2) and a second one Γ− ⊂ T2 is
defined by x1 = −θr (x2). Let w+ be the measure on T2 which is supported by Γ+ and
is defined by the following property: for any compactly supported continuous function
g on R2 we have ⟨w+, g⟩ =

∫
Γ+ g(x) dx2 =

∫
R g(θr (x2), x2)dx2. Then we have

Lemma 17. The Fourier coefficients of w+ are

ŵ+(k1, k2) =

∫1
0

exp(−2πik1θr (x2)) exp(−2πik2x2) dx2. (25)

In a similar way we consider the measure w− on T2 which is supported by Γ− and is
defined by the following property: for any compactly supported continuous function g
on R2 we have ⟨w−, g⟩ =

∫
Γ− g(x) dx2 =

∫
R g(−θr (x2), x2)dx2.

Lemma 18. The Fourier coefficients of w− are

ŵ−(k1, k2) =

∫1
0

exp(2πik1θr (x2)) exp(−2πik2x2) dx2. (26)

Finally we consider w = w++w−. Then the measure w is supported by Γ = Γ+∪Γ−.
The Fourier coefficients of w are

ŵ(k1, k2) = 2

∫1
0

cos(2πk1θr (x2)) exp(−2πik2x2) dx2. (27)

But cos(2πkθr (x)) =
∑k

0 αr (k ,m) cos(2πkx). This yields

ŵ(k1, k2) = αr (|k2|, |k1|). (28)

Lemma 19. The pair (w ,T ) is a lighthouse on T2.
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Viewed as two Z2−periodic measures on R2 the measures w± and w are denoted by
τ± and τ The support of τ+ is the union C+ of the pairwise disjoint curves C+

l , l ∈ Z,
defined by the equations x1 = θr (x2) + l . Similarly the support of τ− is the union C−
of the pairwise disjoint curves C−

l , l ∈ Z, defined by the equations x1 = −θr (x2) + l . We
set C = C+ ∪ C−. Let us summarize our discussion.

Lemma 20. The Z2−periodic measure τ is supported by C and the distributional
Fourier transform of τ is an atomic measure ρ supported by T ∩ Z2. Therefore (τ,T )
is a lighthouse.

7. Exotic Ahern measures

In Theorem 8 the inner function f is assumed to be smooth. What happens if
this condition is not satisfied? We show here that some singular inner functions yield
beautiful Ahern measures. However these exotic measures cannot be used to construct
crystalline measures. It is interesting to analyze this failure. In our first example α > 0
is a constant and the singular inner function g(z) = exp(−α1−z

1+z ) is used. Then the proof

of Theorem 8 can be repeated and an Ahern measure ωg on T2 is constructed. We now

compute ωg. We set z = exp(2πiθ). The phase ϕ(θ) of g(2πiθ) is ϕ(θ) = α
tan(πθ)

2π
.

Let Γg ⊂ T2 be the graph of −ϕ : T 7→ T. Then Γg is an open curve in T2 with
an infinite length. The closure F of Γg is the union between Γg and the vertical line
defined by θ1 = 1/2. Therefore F has a zero Haar measure. An Ahern measure ωg

supported by Γg is constructed as follows. One defines the probability measure ωg as
the image of the Haar measure on T by the mapping θ1 7→ (θ1,−ϕ(θ1)). Then ωg is
absolutely continuous with respect to the arc length measure ds on Γg. The density
of ωg with respect to ds is a smooth function of the arc length s and is O(s−2) at
infinity. Finally the proof of Theorem 8 can be repeated in this context and implies
that ωg is an Ahern measure on T2. We now check that this Ahern measure ωg cannot
be used to construct a crystalline measure. For m ∈ Z we let Γm ⊂ R2 be the graph
of the function −ϕ + m : R 7→ R. Let σm be the image of the Lebesgue measure on
the horizontal axis by the map x1 7→ (x1,−ϕ(x1) + m). We consider C = ∪mΓm which
is the support of the measure σ =

∑
m σm. This set C is not closed in R2. The closure

of C is the union between C and the vertical lines defined by x1 = k + 1/2, k ∈ Z.
Next we consider the line L = {x ∈ R2; x1 = t, x2 =

√
2t, t ∈ R}. Let τL be the

Lebesgue measure on L. The pointwise product στL is not a crystalline measure on
L. Indeed the intersection Λ = C ∩ L is not a closed discrete set since every point
x ∈ L of the form x = (k + 1/2,

√
2(k + 1/2)), k ∈ Z, is an accumulation point of Λ.

We can generalize this example with g(z ;α, ζ) = exp(−αζ−z
ζ+z ) with |ζ| = 1 and finally

with a finite product G(z) = g(z ;α1, ζ1) ... g(z ;αN , ζN). Then the phase of G(z) is

ϕG(θ) =
∑N

1
αj

2π
tan(π(θ − θj)) if ζj = exp(2πiθj). Here again ΓG ⊂ T2 is the graph of

−ϕG : T 7→ T. Then ΓG is an open curve in T2 with an infinite length.

In this second example we address Theorem 7 when the inner function f is not
smooth. As above g(z) = exp(−1−z

1+z ). The inner function is given by f(z , ζ) = g(z)g(ζ)

on T2. Let us then consider µf = ℜ(1+f
1−f ). This positive measure is supported by the set
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Γ =
⋃+∞

−∞ Γm where Γm is the curve defined by Γm = {θ ∈ T2; tan(πθ1) + tan(πθ2) =
2mπ, m ∈ Z}. Then each Γm is the graph of a smooth function −ϕm. We have ϕ0(t) = t.
The derivative of ϕm is

ϕ ′
m(t) =

2

2+ 4π2m2 + 4πm sin(2πt) + 4π2m2 cos(2πt)
= Pr (t − α)

where Pr is the Poisson kernel, r = 2πm√
4+4π2m2

, and tanα = 1/πm. We have ϕm(±1/2) =
±1/2. Moreover ϕ ′

m(±1/2) = 1. Therefore all the curves Γm are tangent at (1/2,−1/2)
and at (−1/2, 1/2). The proof of Theorem 7 can be repeated here and we obtain an
Ahern measure ωg,g supported by Γ. This Ahern measure cannot be used to construct
crystalline measures. To prove this remark we lift each Γm from T2 to R2 and denote
by C the union of these lifted curves. All the curves Γm meet at (1/2,−1/2) where they
are tangent. As in our first example this prevents us from using the measure µf to
construct crystalline measures.

8. Counter examples

Theorem 5 is not valid if u1, ... , un are signed measures. Here is a counter example
in four dimensions with n = 2. We have not been able to construct a two dimensional
example. We begin with the building blocks of our counter example. The double cones
S ⊂ R2 and T ⊂ R2 are defined by S = {x ; |x2| ≤ |x1|/3} and S = {x ; |x1| ≤ |x2|/3}. They
are independent. We construct two functions u ∈ L1(R2) and v ∈ L1(R2) which have
the required spectral properties. However their pointwise product is not a measure.
These functions are the building blocks to construct the two lighthouses which are the
counter examples. Let ϕ be a non trivial even function in the Schwartz class S(R2) such

that ϕ̂ is a non negative function supported by the unit disc. The function u ∈ L1(R2)
is defined by

u(x) =
∞∑
1

k−24k exp(2πi7kx1)ϕ(2
kx) (29)

and v is defined by v(x1, x2) = u(x2, x1).

Lemma 21. The two functions u and v are continuous on R2\{0} and have a fast decay
at infinity. They belong to L1(R2) The Fourier transform of u is supported by S and
the Fourier transform of v is supported by T . The pointwise product uv is a tempered
distribution which is not a measure.

The Fourier transform of ϕ(2kx) is supported by the ball centered at 0 with radius 2k .
Therefore the Fourier transform of exp(2πi7kx1)ϕ(2

kx) is carried by the disc centered at
(7k , 0) with radius 2k . This disc is contained in S . It implies that the Fourier transform
of u is supported by S . The same argument applies to v and T . We now prove that the
distribution w = uv is not a measure. We argue by contradiction. If w was a measure
it would be a bounded measure since both u and v have a fast decay at infinity. To
reach a contradiction we prove now that the Fourier transform of w is unbounded. Let
e1 = (1, 0) and e2 = (0, 1). We have ŵ = û ∗ v̂ =

∑
k,l k

−2l−2Jk,l where

Jk,l(x) =

∫
ϕ̂
(x − 7ke1 − y

2k

)
ϕ̂
(y − 7le2

2l

)
dy . (30)
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For any k , l ∈ N we have Jk,l(x) ≥ 0 since ϕ̂ ≥ 0. This implies ∥ŵ∥∞ ≥ k−4∥Jk,k∥∞ ≥
k−4Jk,k(7

k , 7k) = k−44k∥ϕ∥22 which ends the proof.

It remains to construct two “signed lighthouses measures” µ and ν whose pointwise
product is not a measure. A “signed lighthouse” is defined by (i), (ii), and (iii) in
Definition 9 but we do not impose that µ be positive. Our first guess is to use u and v .
But the functions u and v do not satisfy (ii).We now address this issue. For (x1, ... , x4) ∈
R4 we set x ′ = (x1, x2) and x " = (x3, x4) and consider the measures µ = dx1⊗δ(x2)⊗u(x ")
and ν = δ(x1)⊗dx2⊗v(x "). These measures are two independent lighthouses measures.
But the pointwise product between µ and ν is δ(x1) ⊗ δ(x2) ⊗ uv(x ") which is not a
measure.

9. Direct proofs of Theorems 4 and 5

A pedestrian proof of Theorem 4 is detailed for n = 2. We set u1 = u, u2 = v ,S1 = S ,
and S2 = T . Let ∥u∥ (resp. ∥v∥) the total mass of u (resp. the total mass of v). Let
a(k), k ∈ Zn, be the Fourier coefficients of u and b(k), k ∈ Zn, be the Fourier coefficients
of v . Let GN(x) be the Fejer kernel in two variables. We consider uN = GN ∗ u and
vN = GN ∗ v . Then uN and vN are two non negative trigonometric polynomials. We
have ∥uN∥1 ≤ ∥u∥, ∥vN∥1 ≤ ∥v∥ and the Fourier coefficients aN(k) and bN(k), k ∈ Tn,
are supported by S and T and tend to a(k) and b(k) as N tends to infinity. Then the
pointwise product uNvN is obviously a non negative trigonometric polynomial.

Lemma 22. We have

IN =

∫
Tn

uNvN dx = ∥u∥∥v∥. (31)

Indeed this integral is given by IN =
∑

k+l=0 aN(k)bN(l). But k ∈ S , l ∈ T , and
k + l = 0 imply k = l = 0 which ends the proof of (31). To define uv we need to show
that the pointwise products uNvN converge in the distributional sense. Since uNvn is
a bounded sequence in L1(Tn) it suffices to show that each of the Fourier coefficients
cN(k) of uNvN has a limit as N tends to infinity. Indeed cN(m) =

∑
k+l=m aN(k)bN(l).

But given m the set Em of pairs (k , l) ∈ S × T such that k + l = m is a finite set
independent from N. Therefore cN(m) =

∑
{k+l=m,(k,l)∈Em}

aN(k)bN(l) tends to c(m) =∑
{k+l=m,(k,l)∈Em}

a(k)b(l) as N tends to infinity. The same argument shows that the

definition of the product uv does not depend on the choice of the Fejer kernel. Indeed
we have:

Lemma 23. Let u and v satisfy the hypotheses of Theorem 4. Let um be a sequence
of non negative trigonometric polynomials such that (a)

∫
um = 1, (b) the Fourier co-

efficients of um vanish outside S , and (c) um ⇀ u as m → ∞. Let us assume that vm
satisfies the same conditions with respect to v . Then the pointwise products umvm tend
to uv in the distributional sense as m → ∞.

The proof is a copy of the preceding one.

We now prove Theorem 5. Let ϕ be a positive even function in the Schwartz class such

that ϕ̂ is supported by the unit ball denoted by B. To prove that uv is a positive measure
it suffices to replace u and v by U = ϕu and V = ϕv and to prove that the pointwise
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product UV is a positive measure. Now U and V are bounded Radon measures. Let
û be the distributional Fourier transform of u. Then the Fourier transform of U is
Û(y) = û ∗ ϕ̂ and similarly the Fourier transform of V is V̂ (y) = v̂ ∗ ϕ̂. These Fourier
transforms are supported by S+B and T+B where S and T are two independent double
cones. Let G (x) be a non negative Schwartz function such that

∫
G = 1. Let us assume

that the Fourier transform of G is supported by the unit ball B. Let GN(x) = NnG (Nx),
UN = U ∗GN and VN = V ∗GN . Then UN and VN are non negative Schwartz functions.
Their Fourier transforms are given by

ÛN(y) = Ĝ (y/N)

∫
Û(z)ϕ̂(y − z) dz (32)

and

V̂N(y) = Ĝ (y/N)

∫
V̂ (z)ϕ̂(y − z) dz . (33)

Lemma 24. There exists a positive constant C such that for any N ≥ 1 we have∫
Rn UNVN dx ≤ C .

Indeed IN =
∫
Rn UNVN =

∫
Rn ÛN V̂N . We now use (32) and (33) to expand ÛN and

V̂N . We obtain

IN =

∫
R3n

|Ĝ (y/N)|2Û(z)ϕ̂(y − z)V̂ (z ′)ϕ̂(y − z ′) dydzdz ′. (34)

A product ϕ̂(y−z)ϕ̂(y−z ′) vanishes if |y−z | ≥ 1 or |y−z ′| ≥ 1. Therefore the domain
of integration of the integral in (34) is contained in

A = {(y , z , z ′); z ∈ S + B, z ′ ∈ T + B, |y − z | ≤ 1, |y − z ′| ≤ 1}.

But Lemma 2 implies that A is a compact set. Then Lemma 24 follows immediately from

the trivial estimates |Û | ≤ ∥U∥ and |V̂ | ≤ ∥V ∥. It remain to prove that UNVN ⇀ UV
as N → ∞. The proof is similar to the preceding one. We are led to showing that

ÛN ∗ V̂N ⇀ Û ∗ V̂ as N → ∞ or
∫
(ÛN ∗ V̂N)(y)f (y) dy → ∫

(Û ∗ V̂ )(y)f (y) dy for any
compactly supported continuous function f . The support of f is contained in a ball

centered at 0 with radius R. Let us observe that ÛN ∗ V̂N(y) is given by the integral

J(y) =

∫
R3n

Ĝ ((y − z)/N)Û(z ′)ϕ̂(y − z − z ′)Ĝ (z/N)V̂ (z ′′)ϕ̂(z − z ′′) dzdz ′dz ′′.

Here again |y | ≤ R, |y−z−z ′| ≤ 1, |z−z ′′| ≤ 1, z ′ ∈ S+B, z ′′ ∈ T +B, imply that these
arguments belongs to a bounded set K which does not depend on N. The conclusion
follows immediately.

The author is extremely grateful to the anonymous referees for their outstanding
work.
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