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ON STEADY SOLUTIONS OF A 
GENERALIZED WHITHAM EQUATION

Obed Opoku Afram
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(Trans. R. Norw. Soc. Sci. Lett. 2021(3), 5-29) 

ON STEADY SOLUTIONS OF A GENERALIZED WHITHAM 
EQUATION 

                                           OBED OPOKU AFRAM 

 

ABSTRACT. In this paper, we study the steady solutions of a generalized Whitham 
equation 𝜂𝜂! +

"#!
$
𝜂𝜂𝜂𝜂% + 𝐿𝐿&𝜂𝜂% = 0, where 𝐿𝐿& is the nonlocal Fourier multiplier 

operator given by the symbol 𝑚𝑚&(𝜉𝜉) = (tanh 𝜉𝜉 /𝜉𝜉)& with 𝑠𝑠 ∈ (0,1), for which we 
investigate whether a similar local and global theory is available as for the Whitham 
equation, which is the case 𝑠𝑠 = '

$
. We prove that there is a local analytic curve 

bifurcating at wave speed 𝜇𝜇' = (tanh 1)&, and these waves may be extended to 
large ones by global bifurcation. In our quest to understand the regularity of a 
possible highest wave for this generalized equation, we study the regularity of 
waves along the global bifurcation curve. We find that any highest wave of the 
generalized equation is Hölder continuous and has the regularity 𝐶𝐶&(𝕊𝕊) at the point 
when the maximal value is 𝜑𝜑(0) = (

$
. In finding the regularity at the global level, 

we use the techniques from [1] and [2] combined in a new way which is necessary 
for the case '

$
< 𝑠𝑠 < 1. In addition, we study the properties of the symbol 𝑚𝑚&(𝜉𝜉), 

and the corresponding integral kernel.   
 

Keywords: Steady solutions; Whitham equation; local bifurcation; global bifurcation. 
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1. INTRODUCTION 

The water wave equations pose severe challenges for rigorous analysis, modeling, and 
numerical simulation, from a mathematical viewpoint. Although water waves have intrigued 
mankind for thousands of years, it was not until the middle of the nineteenth century that the 
modern theory appeared, principally in the work of Stokes. The nineteenth century also 
produced useful models for tidal waves, solitary waves, the Korteweg–de Vries (KdV) 
equation, the Boussinesq models for shallow water waves, the Kelvin–Helmholtz instability, 
Cauchy–Poisson circular waves, Gerstner’s rotational waves, Stokes’ model for the highest 
wave, and Kelvin’s model for ship wakes [3]. 

 
The Korteweg-de Vries equation (KdV) was introduced in 1895 to model the behavior of 

long waves on shallow water in close agreement with the observations of J. S. Russell [4]. The 
KdV model admits solitary waves which present soliton interaction: two solitary waves keep 
their shape and size after interaction although the ultimate position of each wave has been 
affected by the nonlinear interaction [5]. KdV has a bi-Hamiltonian structure which permits to 
obtain very precise information about the structure of the equation by the inverse scattering 
method, the equation being integrable [6]. The main challenge of the KdV equation was that it 
could not describe the breaking of the wave. 

 
In 1967, a British-born American mathematician, G.B. Whitham proposed in [7] a non-local 

shallow  water  wave  model  for  capturing  the  balance  between  linear  dispersion  and  
nonlinear effects, so that one would have smooth periodic and solitary waves, but also the 
features of wave breaking and surface singularities.  Whitham [5] emphasized that the breaking 
phenomena is one of the most intriguing long-standing problems of water wave theory, and 
since the KdV equation can not describe breaking, he suggested the model  

𝜂𝜂! +
"#"
$)"

𝜂𝜂𝜂𝜂% + 𝐾𝐾)" ∗ 	𝜂𝜂% = 0                                             (1.1) 

known as the Whitham equation. This equation combines a generic non-linear quadratic term 
with the exact linear dispersion relation for surface water waves on finite depth. Here, the kernel 

𝐾𝐾)" = ℱ*'(𝑐𝑐)")                                                      (1.2) 
is the inverse Fourier transform of the phase speed 

𝑐𝑐)"(𝜉𝜉) = =+ ,-./()"1)
1

                                                 (1.3) 

for the linearized water-wave problem; the constants 𝑔𝑔, ℎ3 and 𝑐𝑐3 = @𝑔𝑔ℎ3 denote, respectively, 
the gravitational constant of acceleration, the undisturbed water depth, and the limiting long 
wave speed. The function 𝜂𝜂(𝑡𝑡, 𝑥𝑥) describes the deflection of the fluid surface from the rest 
position at a point 𝑥𝑥 at time 𝑡𝑡 [5]. 
 

The  Whitham  equation  (1.1)  with  the  kernel  (1.2)  has  some  very  interesting  
mathematical features. That  is,  it  is  generically  non-local,  making  pointwise  estimates  
difficult.   Moreover, 𝑐𝑐)"(𝜉𝜉) has slow decay,  and the kernel 𝐾𝐾)! is singular (it blows up at 𝑥𝑥 =
0). This makes the Whitham equation in some important respects different from many other 
equations of the form (1.1) [8].  Whitham’s actual motivation was to find a model that could 
feature the breaking of waves (wave breaking in this context describes a situation in which the 
spatial derivative of the function 𝜂𝜂 becomes unbounded in finite time, while 𝜂𝜂 itself remains 
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bounded).  Another interest was wave peaking which means that a wave forms a sharp crest or 
peak, such as a stagnation point in the full water wave problem [9, 10]. The  Whitham  equation  
captures  the  peaking  phenomenon  of  the  Stokes  waves  for  the  full water-wave problem.  
Interest in breaking, peaking and other phenomena connected with (1.1) has spawned a large 
amount of mathematical work.  The monograph by Naumkin and Shishmarev [11] is devoted 
entirely to equations like (1.1). 

 
In  recent  years,  Hur  [12]  also  dealt  with  the  issue  of  wave  breaking  of  bounded  

solutions with unbounded derivatives.  One another hand, Hur and Tao [10] showed the wave 
breaking for the Whitham equation in a range of fractional dispersion.  Hur and Johnson [13] 
also show that periodic traveling waves with sufficiently small amplitudes of the Whitham 
equation are spectrally unstable to long-wavelengths perturbations if the wave number is greater 
than a critical value,bearing out the Benjamin-Feir instability of Stokes waves. 

 
Borluk et al. [14] investigated the simulation properties of the Whitham equation as a model 

for waves at the surface of a body of fluid.  They found out that the periodic traveling-waves 
solutions of the Whitham equation are good approximations to solutions of the full free-surface 
water wave problem. Their results were due to the comparison of numerical solutions of the 
Whitham equation to numerical approximations of solutions of the full Euler free-surface water-
wave problem.  

 
Ehrnström and Kalisch [9] in 2009 proved that there exist small-amplitude periodic traveling 

waves with sub-critical speeds and as the period of these traveling waves tends to infinity, their 
velocities approach the limiting long-wave speed 𝑐𝑐3.  They further showed that there can be no 
solitary  waves  with  velocities  much  greater  than 𝑐𝑐3.   Again  after  performing  some  
numerical analysis,  it  was  proven  that  there  is  a  periodic  wave  of  greatest  height ∼	0.642 
ℎ3. In  2013, Ehrnström and Kalisch [8] again proved the existence of a global bifurcation 
branch of 2π-periodic, smooth,  traveling-wave  solutions  of  the  Whitham  equation.   
Furthermore,  [8]  showed  that  the solutions converge uniformly to a solution of Hölder 
regularity 𝛼𝛼 ∈ (0,1), except possibly at the highest crest point (where 𝛼𝛼 ≤ ½). 

 
The kernel 𝐾𝐾)" of the Whitham equation has not thoroughly been understood.  In 2009, [9] 

features the integrability of this kernel in certain 𝐿𝐿4 spaces and smoothness away from the 
origin. However, very recently Ehrnström and Wahlén [1] provided an explicit representation 
formula for it and again showed that the integral kernel is completely monotone on the interval  
(0,∞) and also analytic with exponential decay away from the origin.  They further proved the 
existence of a highest, cusped periodic traveling wave using the global bifurcation theory.  
Again, they found that the solution is P-periodic,  even and strictly increasing on the interval 
H*4
$
, 0I,  satisfying 𝜑𝜑(0) = (

$
.  The  solution  is  furthermore  smooth  away  from  any  crest,  

and  obtains  its  optimal Hölder  regularity 𝐶𝐶
#
$(R) exactly  at  the  crest,  there by  resolving  

Whitham’s  conjecture  (G. B. Whitham conjectured that for (1.1), there would be a highest, 
cusped, travelling-wave solution). Truong et al.  [15] on the other hand used an approach based 
on a nonlocal version of the center manifold theorem and found the highest wave as a limit 
point of the global bifurcation curve. 
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The  paper  [16]  identified  a  scaling  regime  in  which  the  Whitham  equation  can  be  
derived from the Hamiltonian theory of surface water waves.  After integrating the Whitham 
equation numerically, they showed that the equation gives a close approximation of inviscid 
free surface dynamics as described by the Euler equations.  They then concluded that in a wide 
parameter range of amplitudes and wavelengths, the Whitham equation performs on par with 
or better than the Korteweg-de Vries (KdV) equation,  the Benjamin Bona Mahony (BBM) 
equation and thePadé model.  

 
Sanford et al.  [17] focused on the stability of solutions in view of [9].  The numerical results 

presented in [17] suggest that all large-amplitude solutions are unstable, while small-amplitude 
solutions with large enough wavelength 𝐿𝐿 are stable.  Additionally, [17] proved that the periodic 
solutions with wavelengths smaller than a certain cut-off period always exhibit modulational 
instability.  However, the cut-off wavelength is characterized by 𝑘𝑘ℎ3 = 1.145, where 𝑘𝑘 = $5

6
 

is the wave number and ℎ3 is the mean fluid depth. The periodic traveling waves to the KdV 
do not exhibit this property but are spectrally stable [18].   Bronski  and  Johnson  [19]  also  
investigated  the  spectral  stability  of  a  family  of  periodic standing wave solutions to the 
generalized KdV equation. 

 
In this present work, we consider a general version of the Whitham equation defined in (1.1), 

(1.2) and (1.3).  That is taking 𝑔𝑔, ℎ3~1, we have the generalized Whitham equation 
 

𝜂𝜂! +
"#"
$
𝜂𝜂𝜂𝜂% + 𝐾𝐾& ∗ 	𝜂𝜂% = 0.                                              (1.4) 

We then define the generalized Whitham symbol as 
 

𝑚𝑚&(𝜉𝜉) = 𝐾𝐾&P(𝜉𝜉) = H,-./ 1
1

I
&
,						0 < 𝑠𝑠 < 1,                                    (1.5) 

whilst we have the generalized Whitham kernel defined by 

𝐾𝐾!(𝑥𝑥) = ℱ"#{𝑚𝑚!(𝜉𝜉)} =
#
$%∫ 𝑚𝑚!(𝜉𝜉)𝑒𝑒&'(ℝ 𝑑𝑑𝜉𝜉.                                  (1.6) 
 

    The aim of this paper is to study the generalized Whitham equation (1.4) and to see if a 
similar local and global theory is available as for the Whitham equation with 𝑠𝑠 = '

$
 (see [1, 2]).  

As one goal, we wanted to understand the highest order regularity of the solution for (1.4).  We 
use the techniques from [1] and [2], combine in a new way which is necessary for the case     
'
$
< 𝑠𝑠 < 1, to find the regularity at the global level.  This research requires the study of Banach 

algebras, Hölder spaces, Fréchet differentiability, implicit function theorem in Banach spaces, 
Stieltjes and completely monotone functions and the bifurcation theory.   

    The outline for our investigation is as follows. In Section 2 we lay out the analytic 
preliminaries. Most importantly, we perform some studies on the generalized Whitham kernel.  
In Section 3 we report on the local bifurcation of the generalized Whitham equation, which we 
will then extend to the global continuous curves of solutions in the next section.  In Section 4 
we finally investigate the global bifurcation for the generalized Whitham equation, where we 
prove the highest order regularity of the solution for (1.4). 
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    References for borrowed materials and proofs are provided throughout the text.  The proofs 
in Sections 2, 3 and 4 are adaptations of the ones in [1, 2, 8, 9], where the generalized Whitham 
equation, kernel and symbol have been taken into consideration. 

 

2. PRELIMINARIES 

In this section, we discuss the generalized Whitham kernel and its properties. More precise 
details about the Whitham kernel (1.2) are presented in [1, 9]. We shall consider the definitions 
of both the generalized Whitham kernel and symbol in (1.6) and (1.5) respectively in our 
arguments. We also note that 𝑚𝑚&(𝜉𝜉) is clearly an even function.  

 
Monotonicity property of the generalized Whitham kernel. Our aim is to show that the 
generalized Whitham symbol (1.5) belongs to the class of completely monotone functions. A 
more general theory can be found in the monograph [20], however our discussion is centered 
around the generalized Whitham symbol (1.5). 
 

The generalized Whitham symbol can be represented as 𝑚𝑚&(𝜉𝜉) = 𝑓𝑓(𝜉𝜉$), where 

𝑓𝑓(𝜆𝜆) = S
tanh√𝜆𝜆
√𝜆𝜆

U
&

, 𝜆𝜆 ≥ 0	𝑎𝑎𝑎𝑎𝑎𝑎	0 < 𝑠𝑠 < 1. 

We have that |𝜉𝜉| = √𝜆𝜆 and it is also clearly seen that 𝑓𝑓(𝜆𝜆) is positive on the interval (0,∞) and 
also has a nite limit as 𝜆𝜆 → 0. That is 

lim
7→9

𝑓𝑓(𝜆𝜆) = lim
7→9

S
tanh√𝜆𝜆
√𝜆𝜆

U
&

= H1 − lim
7→9

`tanh√𝜆𝜆a
$
I
&
= 1& < ∞, 

It is clearly seen that the function 𝑚𝑚&(𝜉𝜉) in (1.5) is real analytic, even and strictly decreasing 
on (0,1). Now as 𝜉𝜉 → 0, we have 

lim
1→:

𝑓𝑓(𝜉𝜉) = lim
1→:

b
tanh 𝜉𝜉
𝜉𝜉 c

&

= b lim
1→:

sinh 𝜉𝜉
𝜉𝜉 . lim

1→:

1
cosh 𝜉𝜉c

&

= 0, 

since lim
1→:

'
;<=/ 1

  rapidly turns to 0. We know that 𝑓𝑓g(𝜉𝜉) → 0 as |𝜉𝜉| → ∞ by the Riemann-

Lebesgue Lemma. Consequently, 
∫ 𝐾𝐾!(𝑥𝑥) 𝑑𝑑𝑥𝑥
*
"* = 1.                                                        (2.1) 

Proof of (2.1). If 𝑓𝑓 ∈ 𝐿𝐿'(ℝ), then 

i 𝑓𝑓(𝑥𝑥)𝑎𝑎𝑥𝑥 = 𝑓𝑓g(0) = i 𝑓𝑓(𝑥𝑥)𝑒𝑒>%1|1?9	𝑎𝑎𝑥𝑥.
ℝℝ

 

 

⇒ i 𝐾𝐾&(𝑥𝑥)𝑎𝑎𝑥𝑥 = 𝐾𝐾l(0) =
ℝ

b
tanh 𝜉𝜉
𝜉𝜉 c

&

|1?9 = 1. 

⧠ 
    We can therefore deduce from the proof of (2.1) that 

‖𝐾𝐾&‖6#(ℝ) = oℱ*' pb
tanh 𝜉𝜉
𝜉𝜉 c

&

qo
6#(ℝ)

= 1, 

this implies that 𝐾𝐾& ∈ 𝐿𝐿'(ℝ), since the function 𝑚𝑚&(𝜉𝜉) is analytic and the inverse Fourier 
transform has rapid decay. 



10

O.O. Afram – On Steady Solutions of a Generalized Whitham Equation

10

 
Alternatively, to show that 𝐾𝐾& ∈ 𝐿𝐿'(ℝ) we split the integral according to 

‖𝐾𝐾&‖6#(ℝ) =	i |𝐾𝐾&(𝑥𝑥)|𝑑𝑑𝑥𝑥
ℝ

= i |𝐾𝐾&(𝑥𝑥)|𝑑𝑑𝑥𝑥
|%|C'

+i |𝐾𝐾&(𝑥𝑥)|𝑑𝑑𝑥𝑥
|%|D'

< ∞, 

since the limit of 𝐾𝐾&P(𝜉𝜉) as ξ approaches both 0 and ∞ is finite, hence it is plain that 𝐾𝐾& has 
finite 𝐿𝐿'(ℝ)-norm. We have that the smooth and even function 𝑚𝑚&(𝜉𝜉) is increasing in 
(−∞, 0) and decreasing in (0,∞), reaching its global maximum of unit size at 𝜉𝜉 = 0. As 
|𝜉𝜉| → ∞, it vanishes with the rate  |𝜉𝜉|*&. The function 𝑚𝑚&(𝜉𝜉) is even and integrable and we 
must now show that it is a completely monotone function. 
 
   When you look at Corollary 7.4 in [20] we have that: Let g be a positive function on (0,∞). 
Then g is a Stieltjes function if, and only if, g(0+) exists in [0,∞] and g extends analytically to 
ℂ\(−∞, 0] such that ℑ𝑚𝑚	𝑧𝑧. ℑ𝑚𝑚	𝑔𝑔(𝑧𝑧) ≤ 0, i.e. g maps ℍ↑ to ℍ↓ and vice versa  
Ehrnström and Wahlén [1, Remark 2.10], made a remark on Corollary 7.4 in [20] that positive 
constant functions are examples of Stieltjes functions. And it follows easily by basic properties 
of analytic functions that a non-constant Stieltjes function maps ℂG = {𝑧𝑧 ∈ ℂ: ℑ𝑚𝑚	𝑧𝑧 > 0} to 
ℂ* = {𝑧𝑧 ∈ ℂ: ℑ𝑚𝑚	𝑧𝑧 < 0}. Again they remarked that if g is not identically 0, then 1/g(z) is a 
Nevanlinna function (also known as Herglotz or Pick function) and the corresponding function 
1/g(x) is then a complete Bernstein function. 
 
We shall make use of [1, Proposition 2.20], which we state in the form suitable for our purpose. 
 
Theorem 2.1. Let g and f be two functions satisfying 𝑔𝑔(𝜉𝜉) = 𝑓𝑓(𝜉𝜉$). Then g is the Fourier trans- 
form of an even, integrable and completely monotone function if f is Stieltjes with lim

7→9
𝑓𝑓(𝜆𝜆) <

∞ and lim
7→:

𝑓𝑓(𝜆𝜆) = 0. 

Proof of Theorem 2.1. It is clearly seen that lim
7→9

𝑓𝑓(𝜆𝜆) < ∞ and lim
7→:

𝑓𝑓(𝜆𝜆) = 0. We now 
show that 𝑓𝑓(𝜆𝜆) = (ℎ(𝜆𝜆))& is a Stieltjes function for any 𝑠𝑠 ∈ (0,1). Let 

ℎ(𝜆𝜆) = 	S
tanh√𝜆𝜆
√𝜆𝜆

U , 𝜆𝜆 ≥ 0. 

It is noted that the reciprocal of ℎ(𝜆𝜆)  

𝜆𝜆 ↦
√𝜆𝜆

tanh√𝜆𝜆
 

is positive on (0,∞) with the finite limit 1 as 𝜆𝜆 → 0, and extends to an analytic function on 
ℂ\(−∞, 0] if we let √𝜆𝜆 denote the principal branch of the square root. It also maps ℂG to ℂG. 
We note that sinh(𝑧𝑧) = −𝑖𝑖 sin(𝑖𝑖𝑧𝑧) and sinh 𝑧𝑧 ≥ 𝑧𝑧 for 𝑧𝑧 ≥ 0 then by a straightforward 
calculation 

ℑ𝑚𝑚	 H
𝑧𝑧

tanh 𝑧𝑧I = 	ℑ𝑚𝑚	 S
𝑧𝑧(𝑒𝑒H + 𝑒𝑒*H)
(𝑒𝑒H − 𝑒𝑒*H) ∙ 	

(𝑒𝑒H − 𝑒𝑒*H)ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

(𝑒𝑒H − 𝑒𝑒*H)ÄÄÄÄÄÄÄÄÄÄÄÄÄÄU 

=
ℑ𝑚𝑚	𝑧𝑧	(2 sinh(2𝔑𝔑𝑒𝑒	𝑧𝑧) − 2𝑖𝑖	 sin(2ℑ𝑚𝑚	𝑧𝑧))

|𝑒𝑒H − 𝑒𝑒*H|$  

>
4

|𝑒𝑒H − 𝑒𝑒*H|$
(ℑ𝑚𝑚	𝑧𝑧	𝔑𝔑𝑒𝑒	𝑧𝑧 − 𝔑𝔑𝑒𝑒	𝑧𝑧	ℑ𝑚𝑚	𝑧𝑧) = 0 
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when 𝔑𝔑𝔑𝔑	𝑧𝑧, ℑ𝑚𝑚	𝑧𝑧	 > 0 from which it follows that ℑ𝑚𝑚	(√𝜆𝜆/ tanh√𝜆𝜆) 	> 0 when ℑ𝑚𝑚	𝜆𝜆 > 0. 
This implies that 𝜆𝜆 ↦ tanh√𝜆𝜆 /√𝜆𝜆 satisfies the conditions of Corollary 7.4 in [20], hence the 
function h is a Stieltjes function. In agreement with Lemma 2.12 in [1], which states that: If g 
is a Stieltjes function, then so is 𝑔𝑔I for any  𝛼𝛼 ∈ (0,1], we can then say that (ℎ(𝜆𝜆))& = 𝑓𝑓(𝜆𝜆) is 
a Stieltjes function. In conclusion, the function 𝑔𝑔(𝜉𝜉) = 𝑚𝑚&(𝜉𝜉) is the Fourier transform of an 
even, integrable and completely monotone function since f is Stieltjes with lim

7→9
𝑓𝑓(𝜆𝜆) < ∞ and 

lim
7→:

𝑓𝑓(𝜆𝜆) = 0. 

⧠ 
The generalized Whitham kernel 𝐾𝐾&(𝑥𝑥) in (1.6) is completely monotone on (0,∞). In 
particular, it is positive, strictly decreasing and strictly convex for x > 0 as proved by [1]. 
 
   We now briey discuss some properties of the convolution operator and also examine how it 
acts on periodic functions. 
 
The convolution operator 𝑳𝑳𝒔𝒔. The convolution operator from the Whitham map is much 
needed in our bifurcation analysis and it is necessary that we know its properties. We refer the 
reader to [9, 21, 22] for more details. We define convolution operator by 

𝐿𝐿& ≔ 𝐾𝐾& ∗																																																																											(2.2) 
Theorem 2.2 (Bounded linear operator). 𝐿𝐿& is a bounded linear operator on 𝐿𝐿$(ℝ); that is, if 
𝑓𝑓 ∈ 𝐿𝐿$(ℝ) then ‖𝐿𝐿&𝑓𝑓‖6$(ℝ) ≤ ‖𝑓𝑓‖6$(ℝ). 
Proof of Theorem 2.2. By applying both the convolution and Plancherel's theorem, we have that 

‖𝐿𝐿&𝑓𝑓‖6$(ℝ) = ‖ℱ(𝐿𝐿&𝑓𝑓)‖6$(ℝ) 

≤ Öi Ü𝑓𝑓g(𝜉𝜉)Ü
$
𝑑𝑑𝜉𝜉

ℝ
,				 á

tanh 𝜉𝜉
𝜉𝜉 á ≤ 1 

= à𝑓𝑓gà
6$(ℝ)

= ‖𝑓𝑓‖6$(ℝ). 
 

⧠ 
Theorem 2.3  (Symmetric bounded linear operator). The operator 𝐿𝐿& is symmetric on 𝐿𝐿$(ℝ); 
that is if 𝑓𝑓, 𝑔𝑔 ∈ 𝐿𝐿$(ℝ) then (𝐿𝐿&𝑓𝑓, 𝑔𝑔)6$(ℝ) = (𝑓𝑓, 𝐿𝐿&𝑔𝑔)6$(ℝ). 
 
Proof of Theorem 2.3. Suppose that 𝑓𝑓, 𝑔𝑔 ∈ 𝐿𝐿$(ℝ), then applying Plancherel's theorem, we have 
that 

(𝐿𝐿&𝑓𝑓, 𝑔𝑔)6$(ℝ) = (ℱ(𝐿𝐿&𝑓𝑓), ℱ(𝑔𝑔))6$(ℝ) 

= i ℱ(𝐿𝐿&𝑓𝑓)ℱ(𝑔𝑔)ÄÄÄÄÄÄÄ
ℝ

𝑑𝑑𝜉𝜉	 

= i b
tanh 𝜉𝜉
𝜉𝜉 c

&

𝑓𝑓g(𝜉𝜉)𝑔𝑔â(𝜉𝜉)ÄÄÄÄÄÄ
ℝ

𝑑𝑑𝜉𝜉 = (𝑓𝑓, 𝐿𝐿&𝑔𝑔)6$(ℝ). 

It follows that 𝐿𝐿& is a symmetric bounded linear operator on the space 𝐿𝐿$(ℝ). 
⧠ 
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 Next we discuss how the convolution operator acts on periodic functions. If 𝑓𝑓 ∈ 𝐿𝐿:(ℝ) is 
periodic and even (since 𝐾𝐾& is in 𝐿𝐿'(ℝ)) then by the properties of periodic convolutions, we can 
write the integral 

i 𝐾𝐾&(𝑥𝑥 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦 = ã i 𝐾𝐾&(𝑥𝑥 − 𝑦𝑦 + 2𝑛𝑛𝑛𝑛)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
4

*4

:

K?*:

:

*:
 

																		= i 𝑇𝑇(𝑥𝑥 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
4

*4
, 

where 

𝑇𝑇(𝑥𝑥) = ã 𝐾𝐾&(𝑥𝑥 + 2𝑛𝑛𝑛𝑛)
:

K?*:

. 

The definition of 𝑇𝑇(𝑥𝑥) shows that it is 2p-periodic, even and continuous on [−𝑛𝑛, 𝑛𝑛]\{0}. It is 
proved by Ehrnström and Kalisch in [9] that 𝑇𝑇(𝑥𝑥) belongs to 𝐿𝐿4(−𝑛𝑛, 𝑛𝑛), for 1 ≤ 𝑛𝑛 < 2 using 
Minkowski's inequality. Therefore, according to the Carleson-Hunt theorem [23], 𝑇𝑇(𝑥𝑥) can be 
approximated pointwise by its Fourier series. Thus 

𝑇𝑇(𝑥𝑥) =
1
2𝑛𝑛 𝑇𝑇

é9 +
1
𝑛𝑛ã𝑇𝑇éK cos b

𝑛𝑛𝑛𝑛𝑥𝑥
𝑛𝑛 c =

:

K?'

1
𝑛𝑛ã ′	𝑇𝑇éK cos b

𝑛𝑛𝑛𝑛𝑥𝑥
𝑛𝑛 c

:

K?'

, 

where the prime indicates that the first term of the sum is multiplied by '
$
 . Now the Fourier 

coefficients of T are given by 

𝑇𝑇éK = i ã 𝐾𝐾&(𝑥𝑥 + 2𝑘𝑘𝑛𝑛)𝑒𝑒*
>%K5
4

:

L?*:

𝑑𝑑𝑥𝑥
4

*4
 

= ã i 𝐾𝐾&(𝑥𝑥 + 4𝑘𝑘𝑛𝑛)𝑒𝑒*
>(%G$L4)K5

4 𝑑𝑑𝑥𝑥
*($L*')4

*($LG')4

:

L?*:

 

= i 𝐾𝐾&(𝑥𝑥)𝑒𝑒
*>%K54 𝑑𝑑𝑥𝑥

:

*:
 

= 𝐾𝐾l& b
𝑛𝑛𝑛𝑛
𝑛𝑛 c. 

One can observe that the periodic problem is given by the same multiplier as the problem at 
hand, hence we have the representation 

𝐾𝐾& ∗ 		𝑓𝑓(𝑥𝑥) = i 𝑇𝑇(𝑥𝑥 − 𝑦𝑦)𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
4

*4
 

= i
1
𝑛𝑛ã ′	𝐾𝐾lK b

𝑛𝑛𝑛𝑛
𝑛𝑛 c cos S

𝑛𝑛𝑛𝑛(𝑥𝑥 − 𝑦𝑦)
𝑛𝑛 U

:

K?9

𝑓𝑓(𝑦𝑦)𝑑𝑑𝑦𝑦
4

*4
 

=
1
𝑛𝑛ã ′	𝐾𝐾lK b

𝑛𝑛𝑛𝑛
𝑛𝑛 cë

𝑒𝑒
>K5%
4 𝑓𝑓gK + 𝑒𝑒*

*>K5%
4 𝑓𝑓g*K

2 í
:

K?9

 

=
1
𝑛𝑛ã ′	𝑓𝑓gK𝐾𝐾l& b

𝑛𝑛𝑛𝑛
𝑛𝑛 c cos b

𝑛𝑛𝑛𝑛𝑥𝑥
𝑛𝑛 c

:

K?9

, 

Since 𝑓𝑓gK = 𝑓𝑓g*K for even  f. 
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Fourier multipliers on Hölder spaces. We present a brief summary of certain properties of 
the Fourier multiplier operators, given by classical symbols for the purpose of our analysis. We 
refer the reader to [24, 25] for a more detailed argument. 
   A smooth, real-valued function g on ℝ is said to be in the symbol class 𝒮𝒮M if for some constant 
𝑐𝑐L > 0 and any non-negative integer k, the estimate 

Ü𝜕𝜕1
L𝑔𝑔(𝜉𝜉)Ü ≤ 𝑐𝑐L(1 + |𝜉𝜉|)M*L 

holds. If 𝛼𝛼 ≥ 0 is real, we may consider those functions in 𝐿𝐿$ such that 
      ∫(1 + |𝜉𝜉|$)I|𝑔𝑔â(𝜉𝜉)|$𝑑𝑑𝜉𝜉 < ∞																																																				(2.3) 

to define the Sobolev space 𝐻𝐻I = 𝑊𝑊I,$. We note that since 1 ≤ (1 + |𝜉𝜉|$)I the finiteness of 
this integral implies ∫Ü𝑓𝑓g(𝜉𝜉)Ü

$
𝑑𝑑𝜉𝜉 < ∞ which implies 𝑓𝑓 ∈ 𝐿𝐿$ by the Plancherel theorem. 

   We will now in the next section discuss the local bifurcation for the Whitham equation which 
will later be extended to the global continuous curves of solutions in Section 4. 
 
 

3. LOCAL BIFURCATION FOR THE WHITHAM EQUATION 

The solution of the Whitham equation is dene on the space 𝐶𝐶OPO.I , 𝛼𝛼 ∈ (0,1), that is, the space 
of even and 𝛼𝛼-Hölder continuous real-valued functions on the unit circle 𝕊𝕊. We also take into 
consideration that the convolution operator (2.2) is a bounded linear operator on 𝐶𝐶OPO.I (𝕊𝕊) and 
there is nothing particular about the choice of 𝛼𝛼 in this section and that all small enough 
solutions are smooth. 

In considering steady solutions with the propagation speed 𝑐𝑐 > 0 of a right-going traveling 
wave, we make the usual ansatz1 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 𝜑𝜑(𝑥𝑥 − 𝑐𝑐𝑡𝑡). Using this form, the equation (1.4) 
transforms into 

−𝑐𝑐𝜑𝜑Q +
3𝑐𝑐3
2 𝜑𝜑𝜑𝜑Q + 𝐾𝐾& ∗ 𝜑𝜑Q = 0 

Which may be integrated to  

−𝑐𝑐𝜑𝜑 +
3𝑐𝑐3
4 𝜑𝜑$ + 𝐾𝐾& ∗ 𝜑𝜑 = 𝛽𝛽 

for some real constant 𝛽𝛽. For solution  𝜑𝜑 ∈ 𝐿𝐿$(ℝ), it appears that 
‖𝐾𝐾& ∗ 𝜑𝜑‖6$(ℝ) = à𝐾𝐾l&𝜑𝜑âà6$(ℝ) 

≤ ‖𝐾𝐾&‖6#(ℝ)‖𝜑𝜑â‖6$(ℝ) 
≤ ‖𝜑𝜑â‖6$(ℝ) = ‖𝜑𝜑‖6$(ℝ), 

the convolution 𝐾𝐾& ∗ 𝜑𝜑 is in 𝐿𝐿$(ℝ) since 𝐾𝐾& is in 𝐿𝐿'(ℝ). Therefore, the left-hand side must 
vanish as |𝑥𝑥| → ∞, and we shall consider the case for which 𝛽𝛽 = 0 [9]. The scalings "

R
𝜑𝜑 ↦ 𝜑𝜑 

and '
#!
𝐾𝐾& ↦ 𝐾𝐾& then yield the normalised equation 

−𝜇𝜇𝜑𝜑 + 𝜑𝜑$ + 𝐾𝐾& ∗ 𝜑𝜑 = 0																																											        (3.1) 
where 𝜇𝜇 ≔ 𝑐𝑐\𝑐𝑐3 is the non-dimensional wave speed.   
 
 

 
1 An assumption about the form of an unknown function which is made in order to facilitate solution of an 
equation or other problem. 
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Local bifurcation theory. Local bifurcation occurs when a parameter change causes the 
stability of an equilibrium (or fixed point) to change [26]. The Whitham symbol in (1.5) is 
considered as a generic non-local smoothing operator in the form of a Fourier multiplier, that 
is, for all 𝜉𝜉 

𝑚𝑚&(𝜉𝜉) = H,-./ 1
1

I
&
≈ '

('G|1|)%
	.																																						      (3.2) 

Indeed, 

i. ,-./ 1
1

= =S./ 1
T;<=/ 1

= U&*U'&

1VU&GU'&W
= U$&*'

1VU$&G'W
≈ '

'G|1|
	 , if	|𝜉𝜉| ≥ 1. 

However, ,-./ 1
1

≈ '
|1|

≈ '
'G|1|

	,			for	|𝜉𝜉| ≫ 1.	 

ii. If |𝜉𝜉| ≪ 1, then  

𝑒𝑒$1 − 1
𝜉𝜉(𝑒𝑒$1 + 1)

≈
𝑒𝑒$1 − 1
2𝜉𝜉 ≈

∫ 𝑒𝑒$X𝑑𝑑𝑑𝑑1
9

𝜉𝜉 ≤
2∫ 𝑒𝑒$X𝑑𝑑𝑑𝑑1

9
𝜉𝜉 ≈

3
2	. 

This implies ,-./ 1
1

≈ '
'G|1|

	 for |𝜉𝜉| ≪ 1. 

We can then say that 𝑚𝑚& belongs to the symbol class 𝒮𝒮*&(ℝ) and therefore its estimate is given 
by  

Ü𝜕𝜕1
L𝑚𝑚&(𝜉𝜉)Ü ≤

1
|𝜉𝜉|&GL ≈

1
(1 + |𝜉𝜉|)&GL 	. 

We must also note that 
+,-.(
(

≈ #
#/|(|

≈ #

(#/|(|!)
"
!
	.																																																 (3.3) 

To illustrate how the analysis used for the Whitham equation can be applied to a larger class of 
equation, a local bifurcation is performed for the Whitham equation. 
   We shall make use of [8, Theorem 3.1], which we state in a form suitable for our purposes as 
we consider the generalized Whitham equation (1.4). The proof of Theorem 3.1 and Proposition 
3.2 are the author's own adaption of the one in [8]. 
 
Theorem 3.1 (Functional-analytic formulation). For fixed 𝛼𝛼  and 𝜇𝜇 > 0, the solutions in 
𝐶𝐶OPO.I (𝕊𝕊) of the Whitham equation (3.1) coincide with the kernel of the analytic operator 𝐹𝐹 ∶
𝐶𝐶OPO.I (𝕊𝕊) 	× ℝY9 → 𝐶𝐶OPO.I (𝕊𝕊) given by 

𝐹𝐹(𝜑𝜑, 𝜇𝜇) = 𝜇𝜇𝜑𝜑 − 𝐿𝐿&𝜑𝜑 + 𝑁𝑁(𝜑𝜑) 
where 𝐿𝐿& is bounded linear and compact and the non-linear operator 𝑁𝑁(𝜑𝜑) has zero linear 
part, meaning that 𝐷𝐷Z𝑁𝑁[0, 𝜇𝜇] = 0. Thus 𝐷𝐷Z𝑁𝑁[0, 𝜇𝜇] is Fredholm of index 0. 
   We must note that the operators 𝐿𝐿& and N are independent of 𝜇𝜇. 
 
Proof of Theorem 3.1. We first consider the Whitham equation (3.1) and define 𝐿𝐿& as in (2.2). 
𝐶𝐶OPO.I (𝕊𝕊) is a subalgebra of the Wiener algebra of 2𝜋𝜋-periodic functions with absolutely 
convergent Fourier series [27]. Hence, for 𝑓𝑓 ∈ 𝐶𝐶OPO.I (𝕊𝕊) and by the Fourier series expansion, 
we have that 

𝑓𝑓(𝑥𝑥) = ã𝑎𝑎L cos(𝑘𝑘𝑥𝑥)
:

L?9

						and						ã|𝑎𝑎L|
:

L?9

< ∞. 
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Now, from (2.2) we have 
𝐿𝐿&𝑓𝑓(𝑥𝑥) = 𝐾𝐾& ∗ 𝑓𝑓(𝑥𝑥) 

= ∑ 𝑎𝑎3 4
+,-.3
3

5
!
cos(𝑘𝑘𝑘𝑘)*

345                       (3.4) 
The Fourier multiplier symbol in the above expression belongs to the symbol class 𝒮𝒮*&(ℝ) as 
shown in (3.2) and 𝐿𝐿&𝑓𝑓 is a bounded linear operator on 𝐶𝐶OPO.I (𝕊𝕊) 	→ 𝐶𝐶OPO.IG& (𝕊𝕊) for 𝛼𝛼 + 𝑠𝑠 ∉ ℤ. 
From (2.3), (3.2) and (3.3) we have that 

‖𝐿𝐿&𝑓𝑓‖[((ℝ)
$ = iÜ𝐿𝐿&𝑓𝑓P (𝜉𝜉)Ü

$
(1 + |𝜉𝜉|$)I𝑑𝑑𝜉𝜉 

≈ i¶
𝑓𝑓g(𝜉𝜉)

(1 + |𝜉𝜉|$)
&
$
¶
$

(1 + |𝜉𝜉|$)I𝑑𝑑𝜉𝜉 

= iÜ𝑓𝑓g(𝜉𝜉)Ü
$
(1 + |𝜉𝜉|$)I*&𝑑𝑑𝜉𝜉 = ‖𝑓𝑓‖[('%(ℝ)

$ . 

 
Conversely, 

‖𝐿𝐿&𝑓𝑓‖[()%(ℝ)
$ = iÜ𝐿𝐿&𝑓𝑓P (𝜉𝜉)Ü

$
(1 + |𝜉𝜉|$)IG&𝑑𝑑𝜉𝜉 

≈ i¶
𝑓𝑓g(𝜉𝜉)

(1 + |𝜉𝜉|$)
&
$
¶
$

(1 + |𝜉𝜉|$)IG&𝑑𝑑𝜉𝜉 

= iÜ𝑓𝑓g(𝜉𝜉)Ü
$
(1 + |𝜉𝜉|$)I𝑑𝑑𝜉𝜉 = ‖𝑓𝑓‖[((ℝ)

$ . 

Since 𝐿𝐿&:	𝐻𝐻I*& → 𝐻𝐻I is continuous implies that 𝐿𝐿&:	𝐻𝐻I → 𝐻𝐻IG&	 is also continuous, hence 𝐿𝐿& 
Is invertible with bounded linear inverse 𝐿𝐿&*' ∶ 	 𝐶𝐶OPO.IG& (𝕊𝕊) 	→ 𝐶𝐶OPO.I (𝕊𝕊). Due to the compactness 
of the embedding 𝐶𝐶OPO.

\ (𝕊𝕊) ↪ 𝐶𝐶OPO.I (𝕊𝕊), 𝛽𝛽 > 𝛼𝛼, the operator is compact on 𝐶𝐶OPO.I (𝕊𝕊). We then 
define the mapping 𝐿𝐿& ∶ 	 𝐶𝐶OPO.I (𝕊𝕊) × ℝY9 	→ 𝐶𝐶OPO.I (𝕊𝕊) by 

𝐹𝐹&(𝜑𝜑, 𝜇𝜇) ≔ 𝜇𝜇𝜑𝜑 − 𝐿𝐿&𝜑𝜑 − 𝜑𝜑$,                                            (3.5) 
where 𝐹𝐹& is analytic. We also have 𝐹𝐹&(0, 𝜇𝜇) = 0, and the linearization 𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇] = 𝜇𝜇 − 𝐿𝐿& is 
Fredholm of index 0. 

⧠ 
   We restate [8, Corollary 3.2], as we consider the general 𝑠𝑠 ∈ (0,1). 
 
Proposition 3.2. For each integer 𝑘𝑘 ≥ 1, there exist 𝜇𝜇L ≔	(tanh(𝑘𝑘)/𝑘𝑘)& and a local, analytic 
curve 

𝜀𝜀 ↦ (𝜑𝜑(𝜀𝜀), 𝜇𝜇(𝜀𝜀)) ∈ 𝐶𝐶OPO.I (𝕊𝕊) × (0,1) 
of nontrivial 2𝜋𝜋/𝑘𝑘-periodic Whitham solutions with 𝐷𝐷]𝜑𝜑(0) = 𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝑥𝑥) that bifurcates from 
the trivial solution curve 𝜇𝜇 ↦ (0,1) at `𝜑𝜑(0), 𝜇𝜇(0)a = (0, 𝜇𝜇L). In a neighborhood of the 
bifurcation point (0, 𝜇𝜇L) these are all nontrivial solutions of 𝐹𝐹&(𝜑𝜑, 𝜇𝜇) = 0 in 𝐶𝐶U^UKI (𝕊𝕊) × (0,1), 
and there are no other bifurcation points 𝜇𝜇 > 0, 𝜇𝜇 ≠ 1 for solutions in 𝐶𝐶OPO.I (𝕊𝕊). At 𝜇𝜇 = 1 the 
trivial solution curve 𝜇𝜇 ↦ (0, 𝜇𝜇) intersects the curve 𝜇𝜇 ↦ (𝜇𝜇 − 1, 𝜇𝜇) of constant solutions 𝜑𝜑 =
𝜇𝜇 − 1; together these constitute all solutions in 𝐶𝐶OPO.I (𝕊𝕊) in a neighborhood of (𝜑𝜑, 𝜇𝜇) = (0,1). 
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Proof of Proposition 3.2. We first consider the expansions2; 

𝜑𝜑(𝜀𝜀) = 𝜀𝜀 cos(𝑥𝑥) + 𝜀𝜀$ b
1
2𝐶𝐶' + 𝐶𝐶$ cos(2𝑥𝑥)c + 𝒪𝒪(𝜀𝜀"), 

𝜇𝜇(𝜀𝜀) = 𝜇𝜇∗ + 𝜀𝜀$(𝐶𝐶' + 𝐶𝐶$) + 𝒪𝒪(𝜀𝜀"), 
𝜇𝜇∗ = 𝜇𝜇' = (tanh(1))&, 

𝐶𝐶' =
1

𝜇𝜇∗ − 1 					and 

𝐶𝐶$ =
1

2b𝜇𝜇∗ − btanh(2)2 c
&
c
. 

At the limit where 𝜀𝜀 → 0, we have that 𝜑𝜑(0) = (0), 𝜇𝜇(0) = 𝜇𝜇∗ and also 𝐷𝐷]𝜑𝜑(0) = cos(𝑥𝑥). 
Now the fact that 𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇] = 𝜇𝜇	id − 𝐿𝐿& is Fredholm of index 0 and the formula (3.4) shows 
that 𝜇𝜇L are all simple eigenvalues of 𝐿𝐿&, and that no other eigenvalues 𝜇𝜇 > 0 exist. The assertion 
then follows from the analytic version of the Crandall-Rabinowitz theorem for bifurcation from 
a simple eigenvalue [28, Theorem 8.4.1]. From the equation 

−𝜇𝜇𝜑𝜑 + 𝜑𝜑$ + 𝐿𝐿&𝜑𝜑 = 0 
we have that,  

|𝜑𝜑|$ = |𝜇𝜇𝜑𝜑 − 𝐿𝐿&𝜑𝜑| 
≤ 𝜇𝜇|𝜑𝜑| − |𝐿𝐿&𝜑𝜑| 

‖𝜑𝜑‖:$ = |𝜇𝜇|‖𝜑𝜑‖: − ‖𝐿𝐿&‖6*(ℝ)‖𝜑𝜑‖: 
‖𝜑𝜑‖: = (|𝜇𝜇| − 1)‖𝜑𝜑‖: 

where 𝜑𝜑 = 𝜇𝜇 − 1 is a solution in 	𝜑𝜑 ∈ 𝐶𝐶OPO.I (𝕊𝕊). For the case 𝑘𝑘 = 0 we have the limit as 𝑘𝑘 ↦ 0 
of 𝜇𝜇L ≔	(tanh(𝑘𝑘)/𝑘𝑘)& to be 1, that is 𝜇𝜇9 = 1. Moreover, the fact that the solutions are 2𝜋𝜋/𝑘𝑘-
periodic can be seen by restricting attention to the subspaces {𝜑𝜑 ∈ 𝐶𝐶OPO.I (𝕊𝕊) ∶ 	𝜑𝜑	is	2𝜋𝜋/𝑘𝑘 −
periodic}, and corresponding to the case 𝑘𝑘 = 0, it is instantly verified that 𝜑𝜑 = 𝜇𝜇 − 1 is a 
solution. By uniqueness, this family must therefore constitute the local bifurcation curve at 𝜇𝜇 =
1. Since for all other 𝜇𝜇 > 0 the linearization 𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇] is Fredholm of index zero with trivial 
kernel. It is a consequence of the implicit function theorem that the vanishing solution is locally 
the unique solution in 𝐶𝐶OPO.I (𝕊𝕊). 

⧠ 
In the next section we discuss the global bifurcation for the Whitham equation. 
 
 
 
 
 
 
 
 
 
 
 
 

 
2 These equations will be justified in the next section under Bifurcation formulas. 
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4. GLOBAL BIFURCATION FOR THE WHITHAM EQUATION 

We now study the global bifurcation for the Whitham equation (1.1) and some properties 
along the bifurcation branch (Uniform convergence and the characterization of blow-up). The 
discussions in this section follow a similar pattern as presented by Ehrnström and Kalisch [8] 
and Ehrnström et al [2]. In this present discussion we consider the generalized Whitham symbol 
described in (1.5) instead of  

𝐾𝐾l(𝜉𝜉) = Ö
tanh 𝜉𝜉
𝜉𝜉  

as defined in [8]. The theorems in this section are true for the convolution operator 𝐿𝐿&, which 
maps 𝐶𝐶I into 𝐶𝐶IG& for 𝛼𝛼 + 𝑠𝑠 ∉ ℤ. The choice of 𝛼𝛼 has some implications for the proof about 
the global argument. In particular 𝛼𝛼 > 𝑠𝑠 makes it easier to rule out alternative three in Theorem 
4.4 along the curve of solutions and that alternative one occurs if 𝛼𝛼 > 𝑠𝑠. 
 
Boundedness and smoothness of the Whitham solution. Let 𝐹𝐹& be the Whitham operator 
from Theorem 3.1, defined by (3.4) and (3.5). With 

𝑈𝑈 ≔	 ∞(𝜑𝜑, 𝜇𝜇) ∈ 𝐶𝐶OPO.I (𝕊𝕊) × (0,1) ∶ 	𝜑𝜑 <
𝜇𝜇
2	±, 

we let  
𝑆𝑆 ≔	 {(𝜑𝜑, 𝜇𝜇) ∈ 𝑈𝑈 ∶ 	𝐹𝐹!(𝜑𝜑, 𝜇𝜇) = 0}																																													 (4.1) 

be our set of solutions (we refer readers to [1] for a detailed justification of the choice of U and 
S). 
   We restate Lemmas 4.1, 4.2 and 4.3 in [8]. 
 
Lemma 4.1 (𝐿𝐿:-bound). Let 𝜇𝜇 > 0 and bounded.  Any bounded Whitham solution satisfies 

‖𝜑𝜑‖* ≤ 𝜇𝜇 + ‖𝐿𝐿!‖ℒ(7#(𝕊𝕊))                                                (4.2) 
where ℒ(𝑋𝑋) denotes the Banach algebra of bounded linear operators on a Banach space X. 
 
Lemma 4.2 (Fredholm). The  Fréchet  derivative 𝐷𝐷Z𝐹𝐹&[𝜑𝜑, 𝜇𝜇] is  a  Fredholm  operator  of  index 
0 for all (𝜑𝜑, 𝜇𝜇) ∈ 𝑈𝑈. 
 
Lemma 4.3 Suppose (𝜑𝜑, 𝜇𝜇) ∈ 𝑆𝑆, then the function 𝜑𝜑 is smooth and bounded, and the closed 
sets of S are compact in 𝐶𝐶OPO.I (𝕊𝕊) × (0,1). 
See  [8, Section 4] for the proof of Lemmas 4.1, 4.2 and 4.3. 
 

We next introduce the concept of global bifurcation in relation to the Whitham equation. 
 

Global bifurcation theory. We shall make use of the global one-dimensional branches theorem 
[28, Theorem 9.1.1], which we state in the form suitable for our purposes. 
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Theorem 4.4 (Global bifurcation). Suppose (0, 𝜇𝜇) ∈ 𝑈𝑈 and 𝐹𝐹&(0, 𝜇𝜇) = 0 for all 𝜇𝜇 ∈ ℝ, then the 
local  bifurcation  curves 𝜀𝜀 ↦ (𝜑𝜑(𝜀𝜀), 𝜇𝜇(𝜀𝜀)) of  solutions  to  the  Whitham  equation  from  
Proposition 3.2  extend  to  global  continuous  curves  of  solutions ℝD9 → 𝑆𝑆,  with S as  in 
(4.1).  Moreover,  at least one of the following alternatives holds: 

(i) ‖𝜑𝜑(𝜀𝜀)‖`((𝕊𝕊) → ∞		𝑎𝑎𝑎𝑎		𝜀𝜀 → ∞. 
(ii) (𝜑𝜑(𝜀𝜀), 𝜇𝜇(𝜀𝜀)) approaches the boundary of S as 𝜀𝜀 tend to ∞. 
(iii) The function 𝜀𝜀 ↦ (𝜑𝜑(𝜀𝜀), 𝜇𝜇(𝜀𝜀)) is T-periodic, for some 𝑇𝑇 ∈ (0,∞). 

 
We can rely on Lemma 4.2 and 4.3 and show that, for 𝜀𝜀 > 0 taken to be sufficiently small, 

𝜇𝜇(𝜀𝜀) is not identically equal to a constant; that is if any of the derivatives 𝜇𝜇(L)(0) ≠ 0.  In our 
case it turns out that �̇�𝜇(0) = 0, however one can show that �̈�𝜇(0) ≠ 0. 

 
This is being proved by the use of the Lyapunov-Schmidt reduction. To discuss the 

Lyapunov-Schmidt  reduction  and  the  bifurcation  formulas  in  the  next  two  sections  we  
first  make  some definitions suitable for our purposes.  Let 𝜇𝜇∗ ≔ 𝜇𝜇' be the bifurcation point 
from Proposition 3.2 and let 

𝜑𝜑∗(𝑥𝑥) ≔ cos(𝑥𝑥). 
Let furthermore 

𝑀𝑀 ≔ ∏ã𝑎𝑎L cos(𝑘𝑘𝑥𝑥) ∈ 𝐶𝐶I(𝕊𝕊)
Lb'

π, 

and  
𝑁𝑁 ≔ ker`𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]a = span(𝜑𝜑∗). 

Then 𝐶𝐶OPO.I (𝕊𝕊) = 𝑀𝑀⊕𝑁𝑁 and we can use the canonical embedding 𝐶𝐶I(𝕊𝕊) ↪ 𝐿𝐿$(𝕊𝕊) to define a 
continuous projection ∐ ∶ 	𝐶𝐶I(𝕊𝕊) → ℂ	 by 

∐Z ≔ 〈𝜑𝜑, 𝜑𝜑∗〉6$(𝕊𝕊)𝜑𝜑∗, 
with 

〈𝑢𝑢, 𝑣𝑣〉6$(𝕊𝕊) ≔
1
𝜋𝜋i 𝑢𝑢𝑣𝑣	𝑑𝑑𝑥𝑥
𝕊𝕊

. 

Lyapunov-Schmidt reduction. The Lyapunov-Schmidt procedure is a method for reducing 
the question of existence of solutions to an infinite-dimensional equation, locally in a 
neighbourhood of a known solution, to an equivalent one involving an equation in finite 
dimensions, quite commonly (though not always) in just two dimensions [28]. 
 
Theorem 4.5 (Lyapunov-Schmidt Reduction [29]). There exist a neighborhood 𝒪𝒪 × 𝑌𝑌 ⊂ 𝑈𝑈 
around (0, 𝜇𝜇∗) in which the problem 

𝐹𝐹!(𝜑𝜑, 𝜇𝜇) = 0                                                    (4.3) 
is equivalent to 

Փ(𝜀𝜀𝜑𝜑∗, 𝜇𝜇) ≔ ∐𝐹𝐹!(𝜀𝜀𝜑𝜑∗ + (𝜀𝜀𝜑𝜑∗, 𝜇𝜇), 𝜇𝜇) = 0                              (4.4) 
for functions 𝜓𝜓 ∈ 𝐶𝐶:(𝒪𝒪c × 𝑌𝑌,𝑀𝑀), Փ ∈ 𝐶𝐶:(𝒪𝒪c × 𝑌𝑌,𝑁𝑁), and 𝒪𝒪c ⊂ 𝑁𝑁 an open neighborhood 
of the zero function in N. One has 

Փ(0, 𝜇𝜇∗) = 0, 
𝜓𝜓(0, 𝜇𝜇∗) = 0, 

𝐷𝐷Z𝜓𝜓(0, 𝜇𝜇∗) = 0, 
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and solving the finite-dimensional problem (4.4) provides a solution 
𝜑𝜑 = 𝜀𝜀𝜑𝜑∗ + 𝜓𝜓(𝜀𝜀𝜑𝜑∗, 𝜇𝜇) 

of the infinite-dimensional problem (4.3). 
 

We next discuss the concept of bifurcation formulas in relation to the solution curve 
(bifurcation curve) of the Whitham equation. 

 
Bifurcation formulas. The shape of the bifurcation curve follows from the bifurcation formulas. 
If 𝐷𝐷ZZ$ 𝐹𝐹&[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) ∉ 𝑅𝑅(𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]), the number �̇�𝜇(0) is nonzero, and the bifurcation is 
called transcritical (see Figure 1). 

 
However, if 𝐷𝐷ZZ$ 𝐹𝐹&[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) ∈ 𝑅𝑅(𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]) then �̇�𝜇(0) and the local shape of the 

curve is  determined by �̈�𝜇(0).  Now,  if �̇�𝜇(0) < 0,  the  bifurcation  is subcritical,  and  if �̇�𝜇(0) >
0,  it  is supercritical.  In both cases the diagram is referred to as a pitchfork bifurcation (see 
Figure 1). 

 
The bifurcation formulas in [8, Theorem 4.6] are modified with general 𝑠𝑠 ∈ (0,1).  The proof 

is again an adaption of the one in [8]. 
 
 

 
Figure 1. An illustration of the pitchfork bifurcation. 

 
Theorem 4.6 (Bifurcation Formulas). Let 

𝜇𝜇∗ = (tanh(1))&, 

𝐶𝐶' =
1

𝜇𝜇∗ − 1	, 

and  

𝐶𝐶$ =
1

2b𝜇𝜇∗ − btanh(2)2 c
&
c
. 

The main bifurcation curve (𝑘𝑘 = 1) for the Whitham equation found in Proposition 3.2 satisfies 

𝜑𝜑(𝜀𝜀) = 𝜀𝜀 cos(𝑥𝑥) + 𝜀𝜀$ 4#
$
𝐶𝐶# + 𝐶𝐶$ cos(2𝑥𝑥)5 + 𝒪𝒪(𝜀𝜀:)                        (4.5) 

 
and 

𝜇𝜇(𝜀𝜀) = 𝜇𝜇∗ + 𝜀𝜀$(𝐶𝐶# + 𝐶𝐶$) + 𝒪𝒪(𝜀𝜀:)                                      (4.6) 
in the limit as 𝜀𝜀 → 0 for (𝜑𝜑(𝜀𝜀), 𝜇𝜇(𝜀𝜀)) ∈ 𝐶𝐶OPO.I (𝕊𝕊) × (0,1). In particular, �̈�𝜇(0) < 0 and 
Proposition 3.2 describes a subcritical pitchfork bifurcation. 
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Proof of Theorem 4.6. The analysis for 𝜇𝜇 is performed first, followed by that of 𝜑𝜑.  It is known 
that 𝜀𝜀 ↦ 𝜇𝜇(𝜀𝜀) is analytic at 𝜀𝜀 = 0 and that 𝜇𝜇(0) = 𝜇𝜇∗, however it remains to show that   �̇�𝜇(0) =
0 and also to determine  �̈�𝜇(0).  We refer to [29, Section I.6] for the bifurcation formulas used 
in this proof.  We have that  

𝐷𝐷ZZ$ 𝐹𝐹&[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) = −2𝜑𝜑∗$, 
𝐷𝐷Z($ 𝐹𝐹&[0, 𝜇𝜇∗]𝜑𝜑∗ = 𝜑𝜑∗, 

and the value of   �̇�𝜇(0) may be explicitly calculated as 

�̇�𝜇(0) = −
1
2
〈𝐷𝐷ZZ$ 𝐹𝐹&[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗), 𝜑𝜑∗〉6$(𝕊𝕊)

〈𝐷𝐷Z($ 𝐹𝐹&[0, 𝜇𝜇∗]𝜑𝜑∗〉6$(𝕊𝕊)
= 0, 

since  

i cos"(𝑥𝑥) 	𝑑𝑑𝑥𝑥
𝕊𝕊

= 0. 

Moreover, when  �̇�𝜇(0) = 0  one has that 

�̈�𝜇(0) = −
1
3
〈𝐷𝐷ZZZ" Փ[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗, 𝜑𝜑∗), 𝜑𝜑∗〉6$(𝕊𝕊)

〈𝐷𝐷Z($ 𝐹𝐹&[0, 𝜇𝜇∗]𝜑𝜑∗〉6$(𝕊𝕊)
	. 

Since 𝐷𝐷Z($ 𝐹𝐹&[0, 𝜇𝜇∗] = id we find that the denominator is of unit size.  One calculates 
𝐷𝐷ZՓ[𝜑𝜑, 𝜇𝜇]𝜑𝜑∗ = ∐𝐷𝐷Z𝐹𝐹&[𝜑𝜑 + 𝜓𝜓(𝜑𝜑, 𝜇𝜇), 𝜇𝜇	]`𝜑𝜑∗ + 𝐷𝐷Z𝜓𝜓(𝜑𝜑, 𝜇𝜇)𝜑𝜑∗a, 

𝐷𝐷ZZ$ 	Փ[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗)
= ∐𝐷𝐷ZZ$ 𝐹𝐹&[𝜑𝜑 + 𝜓𝜓(𝜑𝜑, 𝜇𝜇), 𝜇𝜇	]`𝜑𝜑∗ + 𝐷𝐷Z𝜓𝜓(𝜑𝜑, 𝜇𝜇)𝜑𝜑∗, 𝜑𝜑∗ + 𝐷𝐷Z𝜓𝜓(𝜑𝜑, 𝜇𝜇)𝜑𝜑∗a
+ ∐𝐷𝐷Z𝐹𝐹&[𝜑𝜑 + 𝜓𝜓(𝜑𝜑, 𝜇𝜇), 𝜇𝜇	]𝐷𝐷ZZ$ 𝜓𝜓[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗), 

and, in view of that 𝐹𝐹& is quadratic in 𝜑𝜑, 
𝐷𝐷ZZZ" 	Փ[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗, 𝜑𝜑∗)

= 3∐𝐷𝐷ZZ$ 𝐹𝐹&[𝜑𝜑 + 𝜓𝜓(𝜑𝜑, 𝜇𝜇), 𝜇𝜇	] H𝜑𝜑∗ + 𝐷𝐷Z𝜓𝜓(𝜑𝜑, 𝜇𝜇)𝜑𝜑∗, 𝐷𝐷ZZ$ 𝜓𝜓[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗)I
+ ∐𝐷𝐷Z𝐹𝐹&[𝜑𝜑 + 𝜓𝜓(𝜑𝜑, 𝜇𝜇), 𝜇𝜇	]𝐷𝐷ZZZ" 𝜓𝜓[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗, 𝜑𝜑∗). 

Applying the form of 𝐷𝐷Z𝐹𝐹& together with 
𝜓𝜓(0, 𝜇𝜇∗) = 𝐷𝐷Z𝜓𝜓[0, 𝜇𝜇∗]𝜑𝜑∗ = 0, 

one finds that 
𝐷𝐷ZZZ" 	Փ[𝜑𝜑, 𝜇𝜇](𝜑𝜑∗, 𝜑𝜑∗, 𝜑𝜑∗)

= ∐(𝜇𝜇∗id − 𝐿𝐿&)𝐷𝐷ZZZ" 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗, 𝜑𝜑∗) − 6∐𝜑𝜑∗𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗). 
 

We have ran(𝜇𝜇∗id − 𝐿𝐿&) = 𝑀𝑀, so that ∐(𝜇𝜇∗id − 𝐿𝐿&) = 0. We thus need to determine 
𝜑𝜑∗𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗). Since 𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗] = 𝜇𝜇∗id − 𝐿𝐿& is an isomorphism on M, it is possible 
(see again [29, Section I.6]) to rewrite  𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) as 

𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) = −`𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]a
*'(id − ∐)𝐷𝐷ZZ$ 𝐹𝐹&[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) 

= −`𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]a
*'(id − ∐)(−2𝜑𝜑∗$) 

= `𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]a
*'(2 cos$(𝑥𝑥)) 

= `𝐷𝐷Z𝐹𝐹&[0, 𝜇𝜇∗]a
*'(1 + cos(2𝑥𝑥))                                      (4.9) 

=
1

𝜇𝜇∗ − 1 +
cos(2𝑥𝑥)

𝜇𝜇∗ − btanh(2)2 c
&	. 
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After multiplication with cos(𝑥𝑥) this equals 
cos(𝑥𝑥)
𝜇𝜇∗ − 1 +

cos(𝑥𝑥)

2 b𝜇𝜇∗ − btanh(2)2 c
&
c
+

cos(3𝑥𝑥)

2 b𝜇𝜇∗ − btanh(2)2 c
&
c
. 

In view of (4.7) and (4.8) the coefficient in front of cos(𝑥𝑥) equals '
$
�̈�𝜇(0).  All taken into 

consideration, we obtain (4.6) via a Maclaurin series, and one easily checks that  �̈�𝜇(0) < 0. 
    To prove (4.5), we make use of the formula 

𝜑𝜑(𝜀𝜀) = 𝜀𝜀𝜑𝜑∗ + 𝜓𝜓(𝜀𝜀𝜑𝜑∗, 𝜇𝜇(𝜀𝜀))                                          (4.10) 
from  the  Lyapunov-Schmidt  reduction  (cf. Theorem  4.5). We  already  know  that 𝜑𝜑(0) = 0 
and �̇�𝜑(0) = cos(𝑥𝑥), so it remains to calculate �̈�𝜑(0).  It follows from (4.10) that �̈�𝜑(𝜀𝜀) =
𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, 𝜑𝜑∗) + 2𝐷𝐷Z($ 𝜓𝜓[0, 𝜇𝜇∗](𝜑𝜑∗, �̇�𝜇(0)) + 𝐷𝐷(($ 𝜓𝜓[0, 𝜇𝜇∗](�̇�𝜇(0), �̇�𝜇(0)) +
𝐷𝐷(𝜓𝜓[0, 𝜇𝜇∗]�̇�𝜇(0). Since 𝜓𝜓(0, 𝜇𝜇) ≡ 0 where 𝜓𝜓 exists, we have 𝐷𝐷(𝜓𝜓(0, 𝜇𝜇∗) = 0.  Combining this 
with �̇�𝜇(0) = 0 one finds that 

�̈�𝜑(0) = 𝐷𝐷ZZ$ 𝜓𝜓[0, 𝜇𝜇∗](cos(𝑥𝑥) , cos(𝑥𝑥)), 
so that the proposition now follows from (4.9). 

⧠ 
Remark 4.7. We note that 

(𝜇𝜇∗ − 𝐿𝐿&)*'ã𝑎𝑎L cos(𝑘𝑘𝑥𝑥)
L?9

= ã
𝑎𝑎L

𝜇𝜇∗ − btanh(𝑘𝑘)𝑘𝑘 c
& cos(𝑘𝑘𝑥𝑥)

L?9

. 

We next discuss some properties along the bifurcation branch of the Whitham equation. 
 

Properties along the bifurcation branch. In considering a sequence of Whitham solutions 
(𝜑𝜑K, 𝜇𝜇K) ∈ 𝑆𝑆 where 𝜇𝜇K ∈ (0,1), then Lemma 4.1 implies that 𝜑𝜑K is uniformly bounded in 
𝐶𝐶(𝕊𝕊).That is 

‖𝜑𝜑‖:$ ≤ ‖𝜇𝜇𝜑𝜑‖: − ‖𝐿𝐿&‖6*(ℝ)‖𝜑𝜑‖: = (|𝜇𝜇| + 1)‖𝜑𝜑‖:,                     (4.11) 
so  that  (𝜑𝜑K)K is  bounded  whenever (𝜇𝜇K)K  is  bounded.   We  know  that  the  kernel 𝐾𝐾& of  
the Whitham equation is integrable and continuous almost everywhere, hence it follows by 
dominated convergence that (𝐿𝐿&𝜑𝜑K)K is equicontinuous. The Arzela-Ascoli Lemma can be 
applied to conclude that a subsequence of 𝜑𝜑K converges uniformly in 𝐶𝐶(𝕊𝕊), when dealing with 
periodic solutions. 
 

We restate Lemma 4.3 in [2], suitable for our purposes as we consider the generalized 
Whitham equation (3.1). 

 
Lemma 4.8. Let 𝜑𝜑 be an even, non-constant, 2𝜋𝜋-periodic solution of (3.1) such that 𝜑𝜑 is non-
decreasing on (−𝜋𝜋, 0) with 𝜑𝜑 ≤ (

$
 on (−𝜋𝜋, 𝜋𝜋).  Then 𝜑𝜑 smooth and strictly increasing on 

(−𝜋𝜋, 0), and as 𝑥𝑥 → 0 we have 
;
$
− 𝜑𝜑(𝑥𝑥) ≳ |𝑥𝑥|!,                                                       (4.12) 

 
for 𝑠𝑠 in the symbol 𝑚𝑚&, and |𝑥𝑥| ≪ 𝛿𝛿. 

See [1] and [2] for the proof of Lemma 4.8.  The proofs in [1] and [2] are for the cases 𝑠𝑠 = '
$
 

and 𝑠𝑠 = 1, and that these proofs may be generalized. 
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Theorem 4.9 (Uniform Convergence). Any  sequence  of  Whitham  solutions (𝜑𝜑K, 𝜇𝜇K) ∈ 𝑆𝑆 has  
a subsequence which converges uniformly to a solution 𝜑𝜑 in 𝐶𝐶(𝕊𝕊).  If 𝜑𝜑 < (

$
 uniformly on ℝ,  

then the  solution  is  smooth.  Assuming 𝜑𝜑 is  even  and  strictly  increasing  on (−𝜋𝜋, 0),  if 
𝜑𝜑 ≤ (

$
 attains the maximal value 𝜑𝜑(0) = (

$
, then the solution is of regularity 𝐶𝐶d(𝕊𝕊)  for all 𝑟𝑟 <

𝑠𝑠, with 

Q
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)Q ≲ |𝑥𝑥|! 

for |𝑥𝑥| ≪ 1. 
The global regularity is not stated as 𝐶𝐶&(𝕊𝕊) in the theorem, even though the pointwise 

estimate is.   And  to  establish  the  global 𝐶𝐶&-Hölder  regularity  (𝜑𝜑 ∈ 𝐶𝐶&(𝕊𝕊)),  one  needs  to  
use  a  second double symmetrisation formula and also combine the lower and upper estimates 
in Lemma 4.8 and Theorem 4.9 respectively. 

 
Proof of Theorem 4.9. We begin the proof by considering  𝜑𝜑 as a limit in 𝐶𝐶9(𝕊𝕊).  The first part 
of Theorem 4.9 has already been established in connection to (4.11).  It remains to prove the 
global regularity results in the third part of the theorem.  To establish this,  we first prove the 
global regularity with no particular restriction on 𝑟𝑟 and that 𝑟𝑟 + 𝑠𝑠 < 1 with 𝑠𝑠 ≤ '

$
.  We know 

from the previous section that 𝐿𝐿& maps 𝐶𝐶d(𝕊𝕊) into 𝐶𝐶dG&(𝕊𝕊) for 𝑟𝑟 + 𝑠𝑠 ∉ ℤ and 𝑟𝑟, 𝑠𝑠 ∈ (0,1).  In 
the case when 2𝜑𝜑 < 𝜇𝜇 everywhere, we have from Lemma 4.3 that 𝜑𝜑 ∈ 𝐶𝐶:(𝕊𝕊), which in 
particular implies that 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊), for any 𝑟𝑟 ∈ (0,1).  Assume now that 𝜑𝜑 ∈ 𝐶𝐶9(𝕊𝕊) with 𝜑𝜑 ≤ (

$
 

and 𝜑𝜑(0) = (
$
 is even and strictly increasing on the interval (−𝜋𝜋, 0), then we have 

|𝜑𝜑(0) − 𝜑𝜑(𝑦𝑦)| =
𝜇𝜇
2 − 𝜑𝜑(𝑦𝑦) 

= S
𝜇𝜇$

4 − 𝐿𝐿&𝜑𝜑(𝑦𝑦)U

'
$
 

= (𝐿𝐿&𝜑𝜑(0) − 𝐿𝐿&𝜑𝜑(𝑦𝑦))
'
$ 

≲ |𝑦𝑦|
dG&
$ , 

for any 𝑟𝑟 ∈ (0,1) (i.e there is no particular restriction on 𝑟𝑟).  This means that if 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊)  then 
𝐿𝐿&𝜑𝜑 ∈ 𝐶𝐶dG&(𝕊𝕊)  and 𝜑𝜑 has  Hölder  regularity '

$
(𝑟𝑟 + 𝑠𝑠)  at  0.   However,  this  does  not  prove  

the regularity at all points, hence we give an argument for 𝑟𝑟 + 𝑠𝑠 < 2 for all 𝑟𝑟 ∈ (0,1) and 
𝜑𝜑(0) = (

$
, for a regularity at the highest point.  To establish the regularity at all points, we first 

consider the situation where 𝑟𝑟 + 𝑠𝑠 < 1.  Assuming that 0 ≤ 𝑥𝑥 < 𝑦𝑦 < 𝜋𝜋 and from (3.1) we have 
that 

𝐿𝐿&𝜑𝜑(𝑥𝑥) = 𝑁𝑁`𝜑𝜑(𝑥𝑥)a = 𝜇𝜇𝜑𝜑 − 𝜑𝜑$,                                         (4.13) 
with 𝑁𝑁Q(𝜑𝜑(𝑥𝑥)) = 𝜇𝜇 − 2𝜑𝜑 and 𝑁𝑁QQ(𝜑𝜑(𝑥𝑥)) = −2.  By expansion of N, we have 

𝑁𝑁`𝜑𝜑(𝑦𝑦)a = 𝑁𝑁`𝜑𝜑(𝑥𝑥)a + 𝑁𝑁Q`𝜑𝜑(𝑥𝑥)a`𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a +
1
2𝑁𝑁

QQ𝜑𝜑(𝜉𝜉)`𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a$ 

𝑁𝑁`𝜑𝜑(𝑥𝑥)a − 𝑁𝑁`𝜑𝜑(𝑦𝑦)a = `𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a(𝜇𝜇 − 2𝜑𝜑(𝑥𝑥)) + `𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a$ 

= 2`𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a H
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)I + `𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a$. 
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It follows from (4.13) that the above estimate yields 
𝐿𝐿&𝜑𝜑(𝑥𝑥) − 𝐿𝐿&𝜑𝜑(𝑦𝑦) ≥ `𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a H(

$
− 𝜑𝜑(𝑥𝑥)I                            (4.14) 

and 
𝐿𝐿&𝜑𝜑(𝑥𝑥) − 𝐿𝐿&𝜑𝜑(𝑦𝑦) ≥ `𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)a$.                                     (4.15) 

Now for 𝑟𝑟 + 𝑠𝑠 < 1, we have that '
$
(𝑟𝑟 + 𝑠𝑠) > 𝑟𝑟 for 𝑟𝑟 < 𝑠𝑠.  We know from before that if 𝜑𝜑 ∈

𝐶𝐶d(𝕊𝕊) then 𝐿𝐿&𝜑𝜑 ∈ 𝐶𝐶dG&(𝕊𝕊)  and  by  this 𝜑𝜑 ∈ 𝐶𝐶(𝕊𝕊) implies 𝐿𝐿&𝜑𝜑 ∈ 𝐶𝐶&(𝕊𝕊),  hence 𝜑𝜑 ∈ 𝐶𝐶&(𝕊𝕊)  
whenever 2𝜑𝜑 ≠ 𝜇𝜇.  Now, considering the map 𝐿𝐿&:	𝜑𝜑 ∈ 𝐶𝐶(𝕊𝕊) 	→ 	𝜑𝜑 ∈ 𝐶𝐶&(𝕊𝕊), we have from 
(4.15) that 

|𝜑𝜑(𝑦𝑦) − 𝜑𝜑(𝑥𝑥)| ≤ |𝑥𝑥 − 𝑦𝑦|
&
$. 

Hence 𝜑𝜑 ∈ 𝐶𝐶
%
$(𝕊𝕊).  This argument can be repeated for 𝜑𝜑 ∈ 𝐶𝐶

%
$(𝕊𝕊) and so forth.  Thus 

𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊),			0 < 𝑟𝑟 < 𝑠𝑠. 
In  the  case  when 𝑠𝑠 ∈ H'

$
, 1I,  the  value  of 𝑟𝑟 + 𝑠𝑠 will  at  some  point  exceed  1  but  not  

2  (i.e 𝑟𝑟 + 𝑠𝑠 < 2).  We now consider  0 < 𝑟𝑟 < 𝑠𝑠 < 1 for 𝑟𝑟 + 𝑠𝑠 > 1 with 𝑠𝑠 ∈ H'
$
, 1I and by the 

mean value theorem if 𝑓𝑓 ∈ 𝐶𝐶'Ge(𝕊𝕊) with 𝑓𝑓Q(0) = 0, then 
|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| = |𝑥𝑥 − 𝑦𝑦||𝑓𝑓Q(0) − 𝑓𝑓Q(𝜉𝜉)| 

≤ |𝑥𝑥 − 𝑦𝑦||𝜉𝜉|e 
≤ |𝑥𝑥 − 𝑦𝑦||𝑦𝑦|e . 

We know from before that if 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊) then 𝐿𝐿&𝜑𝜑 ∈ 𝐶𝐶dG&(𝕊𝕊), however, applying the estimate 
of the mean value theorem to the function 𝐿𝐿&𝜑𝜑 and that (𝐿𝐿&𝜑𝜑)Q(0) = 0, it follows that for 0 ≤
𝑥𝑥 < 𝑦𝑦 < 𝜋𝜋 we have that 

|𝐿𝐿&𝜑𝜑(𝑥𝑥) − 𝐿𝐿&𝜑𝜑(𝑦𝑦)| ≲ |𝑥𝑥 − 𝑦𝑦||𝑦𝑦|dG&*'.                                    (4.16) 
If we assume that 𝑥𝑥 < |𝑥𝑥 − 𝑦𝑦| and whenever 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊), 𝑟𝑟 ∈ (0,1), the estimate (4.15), (4.16) 
and the triangle inequality altogether yield 

|𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)| ≲ |𝑥𝑥 − 𝑦𝑦|
+)%
$ ,                                             (4.17) 

which is valid uniformly for all 0 ≤ 𝑥𝑥 < 𝑦𝑦 < 𝜋𝜋 and all solutions 𝜑𝜑.  On the other hand,  when 
|𝑥𝑥 − 𝑦𝑦| ≤ 𝑥𝑥 we have from (4.14), (4.16) and the triangle inequality that 

`𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)a H(
$
− 𝜑𝜑(𝑥𝑥)I ≲ |𝑥𝑥 − 𝑦𝑦||𝑥𝑥|dG&*'.                                (4.18) 

Now, the estimates (4.12) and (4.18) gives that 
𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦) ≲ |%*f||%|+)%'#

|%|%
= |%*f|

%#'+
,                                      (4.19) 

whenever 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊) for some 𝑟𝑟 ∈ (0,1). 
We observe that if |𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| < 1, then for a given 𝛽𝛽 ∈ (0,1) we have that 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ (𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦))\ 
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Now  for  a  given 𝛽𝛽 ∈ (0,1),  we  interpolate  between  (4.17)  (at  the  point 𝑥𝑥 = 0)  and  (4.19) 
with the estimate (4.20).  Applying the reverse triangle inequality to |𝑥𝑥 − 𝑦𝑦| ≤ 𝑥𝑥 we have that 
Ü|𝑥𝑥| − |𝑦𝑦|Ü ≤ |𝑥𝑥 − 𝑦𝑦| ≤ 𝑥𝑥, which implies that 𝑦𝑦 < 2𝑥𝑥.  Now, using 𝑦𝑦 < 2𝑥𝑥 we have 

1
|𝑥𝑥 − 𝑦𝑦|\

∙
`𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)a

H𝜇𝜇2 − 𝜑𝜑(𝑦𝑦)I
≤
`𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)a\

H𝜇𝜇2 − 𝜑𝜑(𝑦𝑦)I
\ ∙

1
|𝑥𝑥 − 𝑦𝑦|\

 

`𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)a
|𝑥𝑥 − 𝑦𝑦|\

≤
`𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)a\

H𝜇𝜇2 − 𝜑𝜑(𝑦𝑦)I
\ H

𝜇𝜇
2 − 𝜑𝜑(𝑦𝑦)I

'*\
 

≲ H
𝑥𝑥

𝑥𝑥'*dI
\
𝑥𝑥*\ b𝑥𝑥

dG&
$ c

'*\
 

≲ 𝑥𝑥(d*')\Gg
dG&
$ h('*\) 

which is bounded for all 0 ≤ 𝑥𝑥 < 𝑦𝑦 < 𝜋𝜋, provided that 𝛽𝛽 ≤ dG&
$*dG&

 and 𝑟𝑟 + 𝑠𝑠 < 2. In 

particular,when we consider 𝛽𝛽 = dG&
$*dG&

 then the estimate above becomes 

𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦) ≲ |𝑥𝑥 − 𝑦𝑦|
+)%

$'+)%,                                          (4.21) 
valid for all solutions 𝜑𝜑 when |𝑥𝑥 − 𝑦𝑦| ≤ 𝑥𝑥 and 𝑟𝑟 + 𝑠𝑠 < 2 and for all 0 ≤ 𝑥𝑥 < 𝑦𝑦 < 𝜋𝜋 whenever 
𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊) with 𝑟𝑟 ∈ (0,1), 𝑟𝑟 + 𝑠𝑠 < 2, and 𝑠𝑠 > 𝑟𝑟.  We will from now establish the uniformity 
for all solutions 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊).  It follows that if 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊) is a solution of the generalized 

Whitham equation for some 𝑟𝑟 ∈ (0,1) with 𝑠𝑠 > 𝑟𝑟 and 𝑟𝑟 + 𝑠𝑠 < 2, then 𝜑𝜑 ∈ 𝐶𝐶
+)%

$'+)%(𝕊𝕊).  If we 
fix 𝑟𝑟9 ∈ H0, &

$
I and define the recurrence relation 

𝜆𝜆K = 𝑟𝑟9,					𝜆𝜆KG' =
𝜆𝜆K + 𝑠𝑠

2 − 𝜆𝜆K + 𝑠𝑠 ,							𝑛𝑛 ≥ 0, 

yielding that 𝜑𝜑 ∈ 𝐶𝐶7,(𝕊𝕊) for all 𝑛𝑛 ∈ ℕ and 7,G&
$*7,G&

> 𝜆𝜆K which implies 𝜆𝜆K < 𝑠𝑠.  We observe 

that the sequence {𝜆𝜆K}K?':  is clearly strictly increasing with 𝜆𝜆K ↦ 𝑠𝑠, that is 𝜑𝜑 belongs to 𝐶𝐶&(𝕊𝕊), 
and the estimates of 𝐶𝐶d(𝕊𝕊) are uniform for all 𝑟𝑟 ∈ (0, 𝑠𝑠). 

 
We note that if 𝐴𝐴 ≲ 𝐵𝐵 then there exist a constant 𝑐𝑐 such that 𝐴𝐴 ≤ 𝑐𝑐𝐵𝐵 and with this estimate 

we  now  show  that  there  is  a  constant 𝑐𝑐d (depending  on 𝑟𝑟)  such  that  at  the  point 𝑥𝑥 = 0  
the estimate (4.17) becomes 

Õ(
$
− 𝜑𝜑(𝑥𝑥)Õ ≤ 𝑐𝑐d|𝑦𝑦|

+)%
$                                                  (4.22) 

for 𝑟𝑟 + 𝑠𝑠 < 2 and 𝑟𝑟 < 𝑠𝑠.  In considering |𝑦𝑦| ≪ 1, 𝑠𝑠 > 𝑟𝑟 and d,G&
$

> 𝑟𝑟K we have from (4.22) that 

Õ
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)Õ ≤ 𝑐𝑐d|𝑦𝑦|

dG&
$ ≤ 𝑐𝑐d|𝑦𝑦|d, 

for 𝑟𝑟K ∈ (0, 𝑠𝑠).  In other to control the constant 𝑐𝑐d and also by observing that 𝜑𝜑 ∈ 𝐶𝐶d(𝕊𝕊) for all 
𝑟𝑟 ∈ (0, 𝑠𝑠), we define the constant by 

𝑐𝑐d ≔ sup
f∈𝕊𝕊

𝜇𝜇
2 − 𝜑𝜑(𝑦𝑦)

|𝑦𝑦|d < ∞ 

for all 𝑟𝑟 ∈ (0, 𝑠𝑠) and the goal is to establish that one may let 𝑟𝑟 ↗ 𝑠𝑠 in other to obtain the desired 
bound 

𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥) ≲ |𝑥𝑥|𝑠𝑠 
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for all 𝑥𝑥 sufficiently small.  To derive that, we first let 

𝑣𝑣(𝑦𝑦) =
𝜇𝜇
2 − 𝜑𝜑(𝑦𝑦) = 𝜑𝜑(0) − 𝜑𝜑(𝑦𝑦) 

and by letting 0 < 𝛿𝛿 ≪ 1 and also noting that for all 𝑦𝑦 ∈ (0, 𝛿𝛿) we have from (4.15) that 

H
𝜇𝜇
2 − 𝜑𝜑(𝑦𝑦)I

$
≤ 𝐿𝐿&𝜑𝜑(0) − 𝐿𝐿&𝜑𝜑(𝑦𝑦). 

Now using the fact that 𝐾𝐾& and 𝜑𝜑 are even and 2𝜋𝜋-periodic, and also noting that 

𝜑𝜑(0) = 𝜑𝜑𝐾𝐾l&(0) = i 𝐾𝐾&(𝑥𝑥)𝜑𝜑(0),
ℝ

 

 
we have that 
`𝑣𝑣(𝑥𝑥)a$ ≤ 𝐿𝐿&𝜑𝜑(0) − 𝐿𝐿&𝜑𝜑(𝑦𝑦) 

= i `𝐾𝐾&(𝑦𝑦) − 𝐾𝐾&(𝑥𝑥 − 𝑦𝑦)a𝜑𝜑(𝑦𝑦) 𝑑𝑑𝑦𝑦
5

*5
 

= i `𝐾𝐾&(𝑦𝑦) − 𝐾𝐾&(𝑥𝑥 − 𝑦𝑦)a𝜑𝜑(𝑦𝑦) 𝑑𝑑𝑦𝑦
5

*5
−i 𝐾𝐾&(𝑦𝑦)𝜑𝜑(0) 𝑑𝑑𝑦𝑦

5

*5
+i 𝐾𝐾&(𝑥𝑥 − 𝑦𝑦)𝜑𝜑(0) 𝑑𝑑𝑦𝑦

5

*5
 

= i `𝐾𝐾&(𝑥𝑥 − 𝑦𝑦) − 𝐾𝐾&(𝑦𝑦)a`𝜑𝜑(0) − 𝜑𝜑(𝑦𝑦)a 𝑑𝑑𝑦𝑦
5

*5
 

= i `𝐾𝐾&(𝑥𝑥 − 𝑦𝑦) − 𝐾𝐾&(𝑦𝑦)a𝑣𝑣(𝑦𝑦) 𝑑𝑑𝑦𝑦
5

*5
. 

Taking 𝑦𝑦 ↦ −𝑦𝑦 and the fact that 𝐾𝐾& is even, we have 
𝐾𝐾&(𝑥𝑥 − 𝑦𝑦) = 𝐾𝐾&`−(−𝑥𝑥 + 𝑦𝑦)a = 𝐾𝐾&`−(−𝑥𝑥 − 𝑦𝑦)a = 𝐾𝐾&(𝑥𝑥 + 𝑦𝑦). 

Putting all estimates together, we have the representation 

S𝑣𝑣(𝑥𝑥)U$ = #
$∫ |𝐾𝐾!(−𝑥𝑥 + 𝑦𝑦) + 𝐾𝐾!(𝑥𝑥 + 𝑦𝑦) − 2𝐾𝐾!(𝑦𝑦)|𝑣𝑣(𝑦𝑦) 𝑑𝑑𝑦𝑦

%
"% .             (4.24) 

We claim that there is a constant 𝑐𝑐dQ  such that 
'
$∫ |𝐾𝐾&(−𝑥𝑥 + 𝑦𝑦) + 𝐾𝐾&(𝑥𝑥 + 𝑦𝑦) − 2𝐾𝐾&(𝑦𝑦)|𝜓𝜓(𝑦𝑦)dG& 𝑑𝑑𝑦𝑦

5
*5 ≤ 𝑐𝑐dQ`𝜓𝜓(𝑥𝑥)a

$d ,					0 ≤ 𝑟𝑟 < 𝑠𝑠    (4.25) 
 

where 
𝜓𝜓(𝑥𝑥) = min{|𝑥𝑥|, 1}. 

For |𝑥𝑥| ≥ 1, this follows directly from the integrability of 𝐾𝐾& and the fact that ‖𝜓𝜓‖: ≤ 1.  For 
|𝑥𝑥| ≤ 1, we use the splitting 

𝐾𝐾!(𝑥𝑥) = ℱ"# W #
|(|$

+ (+,-.|(|)$"#
|(|$

X,                                         (4.26) 

where the first term has inverse Fourier transform '
|%|%

, while the second term is integrable and 

exponentially decaying and hence has a real-analytic transform.  Since we already considered 
the case when 𝑠𝑠 ∈ H'

$
, 1I,  we have that 𝑟𝑟 + 𝑠𝑠 < 𝑟𝑟 + 2𝑠𝑠 − 1 for 𝑟𝑟 < 𝑠𝑠,  and for |𝑥𝑥| ≤ 1 implies 

that |𝑥𝑥|dG& ≤ |𝑥𝑥|dG$&*'.  Now, for the first part in (4.26), we use the identity 

i á
1

|−𝑥𝑥 + 𝑦𝑦|& +
1

|𝑥𝑥 + 𝑦𝑦|& −
2
|𝑦𝑦|&á

|𝑦𝑦|dG$&*' 𝑑𝑑𝑦𝑦
5

*5

= 𝑥𝑥dG&i á
1

|𝑚𝑚 − 1|& +
1

|𝑚𝑚 + 1|& −
2

|𝑚𝑚|&á |𝑚𝑚|dG$&*'𝑑𝑑𝑚𝑚
ℝ

 

 
 



26

O.O. Afram – On Steady Solutions of a Generalized Whitham Equation

26

Where 𝑦𝑦 = 𝑥𝑥𝑥𝑥 and the integral converges since 

á
1

|𝑥𝑥 − 1|& +
1

|𝑥𝑥 + 1|& −
2

|𝑥𝑥|&á ≲ |𝑥𝑥|*&*',								|𝑥𝑥| ≫ 1. 

The  estimate  above  could  be |𝑥𝑥|*&*$ for 𝑠𝑠 ∈ H0, '
$
I  but  in  the  case  as 𝑠𝑠 → 1, |𝑥𝑥|*&*$ is  

the appropriate estimate for |𝑥𝑥| ≫ 1. We have the estimate (4.25) by using the fact that 
|𝑥𝑥|dG& ≤ |𝑥𝑥|$d for |𝑥𝑥| ≤ 1 and 𝑟𝑟 < 𝑠𝑠.  Now, (4.24) and (4.25) gives the estimate 

S𝑣𝑣(𝑥𝑥)U$ ≤ 𝑐𝑐𝑟𝑟′ S𝜓𝜓(𝑥𝑥)U
2𝑟𝑟

                                              (4.27) 
which is uniform for all (𝑟𝑟, 𝑥𝑥) ∈ (0, 𝑠𝑠) × (0, 𝛿𝛿) with 0 < 𝛿𝛿 ≪ 1.  Rearranging (4.27) yields the 
estimate 

–
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)
|𝑥𝑥|d —

$

≤ 𝑐𝑐dQ  

valid for all 𝑥𝑥 ∈ (0,𝛿𝛿] and 𝑟𝑟 ∈ (0, 𝑠𝑠).  For 𝑥𝑥 ∈ (𝛿𝛿,1] we note that the left-hand side in the above 
inequality is uniformly bounded for all 𝑟𝑟 ∈ [0,𝑠𝑠), hence we find 

–
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)
|𝑥𝑥|d —

$

≤ max(𝑐𝑐dQ , 1) 

 
valid  for  all 𝑥𝑥 ∈ (0,1)  and 𝑟𝑟 ∈ (0, 𝑠𝑠).   Taking  the  supremum  over 𝑟𝑟 < 𝑠𝑠 now  yields  (𝑐𝑐dQ)$ ≤
max(𝑐𝑐dQ , 1), hence 𝑐𝑐dQ ≤ 1 uniformly in 𝑟𝑟 ∈ (0, 𝑠𝑠).  With this uniform bound and now taking 
𝑟𝑟 ↦ 𝑠𝑠 in (4.23), we now have 

;
$
− 𝜑𝜑(𝑥𝑥) ≤ 𝑐𝑐=|𝑥𝑥|!                                                  (4.28) 

 
valid for all |𝑥𝑥| ≪ 1 and 𝑠𝑠 ∈ (0,1). 

⧠	
 

Proposition 4.10. In  Theorem  4.4,  alternative  (ii)  occurs  and  that  alternative  (i)  implies  
(ii) for 𝛼𝛼 > 𝑠𝑠.  Given any sequence of positive numbers 𝜀𝜀K ↗ ∞, there exist a limiting wave 𝜑𝜑 
obtained as the uniform limit of sequence {𝜑𝜑(𝜀𝜀KL)}L.  The limiting wave is a solution of (3.1) 
with 

𝜇𝜇 = lim
L→:

𝜇𝜇(𝜀𝜀KL) 

and  that  it  is  even  and  satisfies 𝜑𝜑(0) = (
$
.  Further,  it  is  smooth,  strictly  increasing  on 

(−𝜋𝜋, 0), and satisfies 
𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥) ≲ |𝑥𝑥|& 

for all |𝑥𝑥| ≪ 1 sufficiently small. 
Lemma 5.5 in [2] gives a detailed account as to why alternative (iii) in Theorem 4.4 cannot 

occur. We now establish the argument that alternative (i) in Theorem 4.4 implies alternative 
(ii).  The proof of Theorem 4.11 is an adaption of the one in [8], but with general 𝑠𝑠 ∈ (0,1). 
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Theorem 4.11 (Characterization of Blow-up). Alternative (i) in Theorem 4.4 can happen only 
if 

lim	 inf
]→:

inf
%∈ℝ

H((])
$

− 𝜑𝜑(𝑥𝑥; 𝜀𝜀)I = 0.                                       (4.29) 
In particular, alternative (i) implies alternative (ii). 
 
Proof of Theorem 4.11. Assume that 

lim	 inf
]→:

inf
%∈ℝ

H((])
$

− 𝜑𝜑(𝑥𝑥; 𝜀𝜀)I ≥ 𝛿𝛿,                                       (4.30) 

for some 𝛿𝛿 > 0.  From (4.14) we have the estimate 
(𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)) H

𝜇𝜇
2 − 𝜑𝜑(𝑥𝑥)I ≲ 𝐿𝐿&𝜑𝜑(𝑥𝑥) − 𝐿𝐿&𝜑𝜑(𝑦𝑦) 

|𝜑𝜑(𝑥𝑥) − 𝜑𝜑(𝑦𝑦)| ≲
|𝐿𝐿&𝜑𝜑(𝑥𝑥) − 𝐿𝐿&𝜑𝜑(𝑦𝑦)|

𝛿𝛿 . 

Any solution in (4.30) of the generalized Whitham equation satisfies the estimate above.  Now 
since 𝐿𝐿&: 𝐶𝐶(𝕊𝕊) → 𝐶𝐶&(𝕊𝕊) is continuous and the family {𝜑𝜑(𝜀𝜀)}] is uniformly bounded in 𝐶𝐶(𝕊𝕊) 
(see Lemma 4.1), it follows that {𝜑𝜑(𝜀𝜀)}]  is uniformly bounded in 𝐶𝐶&(𝕊𝕊) too.  Repeating the 
argument for 𝐿𝐿& as a continuous operator 𝐶𝐶&(𝕊𝕊) → 𝐶𝐶I(𝕊𝕊) where 𝛼𝛼 < 1 and 𝛼𝛼 > 𝑠𝑠 yields that 

‖𝜑𝜑(𝜀𝜀)‖`((𝕊𝕊) ≤ 𝐶𝐶&𝛿𝛿*'	,				𝛼𝛼 ∈ (0,1), 
for some constant 𝐶𝐶& depending only on 𝐿𝐿&.  By assumption 𝜇𝜇 is bounded (see Lemma 4.1) and 
‖𝜑𝜑(𝜀𝜀)‖`((𝕊𝕊) → ∞ is possible only if (4.29) holds. 

⧠ 
We finally conclude that 𝜇𝜇(𝜀𝜀) is bounded and hence, according to Theorem 4.9, there is a 

subsequence (𝜑𝜑KL)L which converges uniformly to a solution 𝜑𝜑3 as 𝑘𝑘 → ∞.  If we consider 𝜇𝜇3 
as the wave speed associated to 𝜑𝜑3, then by the uniform convergence properties of 𝜑𝜑KL, it 
follows that 𝜑𝜑3(0) =

(!
$

 and 𝜑𝜑 ∈ 𝐶𝐶I(𝕊𝕊).  When the alternative (i) in Theorem 4.4 happens, 
alternative (iii) does not and that alternative (i) implies alternative (ii) with the condition that 
0 < 𝑠𝑠 < 𝛼𝛼 < 1. The solution of the normalised equation (3.1) from the generalized Whitham 
equation (1.4) is even, strictly increasing on (−𝜋𝜋, 0), smooth on 𝕊𝕊, and has the regularity 𝐶𝐶&(𝕊𝕊) 
for 𝛼𝛼 < 𝑠𝑠 at the point when the maximal value is 𝜑𝜑(0) = (

$
. 
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