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GLOBAL AND LOCAL ESTIMATES ON TRIGONOMETRIC SUMS

YVES MEYER

Abstract. Let Λ ⊂ Rn be a closed and discrete set and let CΛ be the space of all

mean periodic functions whose spectrum is simple and contained in Λ. We estimate
the behavior at infinity of these mean periodic functions f ∈ CΛ. The tools which

are needed to solve this problem will also be used to fill a gap in a preceding paper.

1. Some problems on trigonometric sums

Let Λ ⊂ Rn be a closed and discrete set.

Definition 1.1. The vector space of all trigonometric sums

P (x) =
∑
λ∈Λ

c(λ) exp(2πiλ · x) (1.1)

whose spectrum is contained in Λ is denoted by TΛ.

Given such a set Λ does there exist a domain of stable uniqueness for TΛ? A domain of
stable uniqueness is a compact set K enjoying the following property: For every P ∈ TΛ

it suffices to estimate P on K to obtain a global estimate for P . If Λ is a lattice this is
obviously true since every P ∈ TΛ is a periodic function. If Γ is the dual lattice, every
γ ∈ Γ is a period of P . If K is a fundamental domain of Γ, P is uniquely determined
by its restriction to K. Can this property be extended to some closed and discrete sets
which are not lattices? This is the core of this essay.

When Λ is not a lattice our problem needs to be given a more precise formulation. An
estimate is given by a functional norm. Surprisingly the answer depends on the choice
of this functional norm. We first consider the case when the local estimate is given by
supx∈K |P (x)| where K ⊂ Rn is a compact set. This choice of the L∞ norm raises an
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issue which is equivalent to the problem mentioned in the abstract (Theorem 4.9). A
closed and discrete set Λ is uniformly discrete if infλ,λ′∈Λ, λ6=λ′ |λ− λ′| > 0.

Definition 1.2. A coherent set of frequency is a uniformly discrete set Λ ⊂ Rn for
which there exist a compact set K ⊂ Rn and a constant C such that for every P ∈ TΛ

one has
sup
x∈Rn
|P (x)| ≤ C sup

x∈K
|P (x)|. (1.2)

Our second problem is a weighted version of (1.2). A mild set Λ is defined as follows:

Definition 1.3. A closed and discrete set Λ is a mild set if there exist a continuous
weight ω(x) ≥ 1 defined on Rn and a compact set K such that one has for every every
P ∈ TΛ and every x ∈ Rn

|P (x)| ≤ Cω(x) sup
y∈K
|P (y)|. (1.3)

A more precise definition of mild sets will be given below (Definition 4.8). As it was
observed by Kahane in [3] these two problems can be given an elegant formulation if the
theory of mean periodic functions is used. This will be done in Section 4 (Theorem 4.9).
A new solution to these two problems will be given in this essay. A spectral analysis of
Λ (Definition 5.18) plays a key role in this solution (Theorem 9.3).

These problems can be addressed with other functional norms. Let E be a function
space. If K ⊂ Rn is a compact set, the space of restrictions to K of functions in E
equipped with the quotient norm will be denoted by E(K). It is assumed that these
restrictions are well defined. The norm in E(K) is denoted by ‖ · ‖E(K). Our third
problem is the following question. Given a closed and discrete set Λ do there exist a
compact set K and a constant C such that for every trigonometric sum P ∈ TΛ one has

∀y ∈ Rn, ‖P‖E(K+y) ≤ C‖P‖E(K) ? (1.4)

The case when E(K) = L2(K) and when Λ is a simple quasi-crystal is discussed in [7],
[8], and [9]. Sigrid Grepstad and Nir Lev [2] discovered that fundamental domains exist
in this context. Our most ambitious problem is the following question: Do there exist
a weight ω(x) ≥ 1 and a compact set K such that for every trigonometric sum P ∈ TΛ

one has
∀y ∈ Rn, ‖P‖E(K+y) ≤ ω(y)‖P‖E(K) ? (1.5)

2. Mean periodic functions

The Fourier transform F(f) = f̂ of a function f ∈ L1(Rn) is defined by

f̂(ξ) =

∫
Rn

exp(−2πix · ξ) dx. (2.1)

Let C(Rn) denote the vector space of all continuous functions on Rn, equipped with
the topology of uniform convergence on compact sets. If fj , j ∈ Nn, is a sequence of
functions in C(Rn), this sequence converges to a function g ∈ C(Rn) if and only if for
every compact set K we have supx∈K |fj(x) − g(x)| → 0, j → ∞. Similarly the space
L2

loc(Rn) of locally square integrable functions on Rn is equipped with the topology of
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convergence in L2 on compact sets. The dual space of C(Rn) consists of all compactly
supported Radon measures on Rn. The definition of mean periodic functions was given
by Laurent Schwartz in [11].

Definition 2.1. Let f ∈ C(Rn) and let Wf ⊂ C(Rn) denote the closed linear span of all
translates f( · − y), y ∈ Rn, of f . Then f is a mean periodic function if Wf 6= C(Rn).

This is certainly the case when Wf is finite dimensional. This happens if and only if
f(x) = P (x) exp(2πiζ · x) where ζ ∈ Cn and P is a polynomial. We then say that f
is an exponential polynomial. Returning to the general case, Hahn–Banach theorem
implies the following:

Lemma 2.2. A continuous function f is mean periodic if and only if there exists a non
trivial compactly supported Radon measure µ such that µ ∗ f = 0.

‘Non trivial’ means that µ is not the trivial zero measure. Lemma 2.2 implies that the
collection of mean periodic functions is a vector space: if f1 ∗ µ1 = 0 and f2 ∗ µ2 = 0
then µ1 ∗ µ2 = µ3 is non trivial and (f1 + f2) ∗ µ3 = 0.

An exponential polynomial f satisfies f ∗ µ = 0 where µ is a weighted sum of Dirac
masses. Laurent Schwartz in the one dimensional case [11] and Bernard Malgrange in
the general case [6] proved the following theorem:

Theorem 2.3. Let f be a mean periodic function. Then f is a limit in C(Rn) of a
sequence of finite sums of exponential polynomials belonging to Wf .

Definition 2.4. Let f be a mean periodic function. Then the spectrum Λ ⊂ Cn of f
is the set of all ζ ∈ Cn such that exp(2πiζ · x) ∈ Wf . The multiplicity m(ζ) of ζ is
the largest degree of polynomials P such that P (x) exp(2πiζ · x) ∈Wf . We say that the
spectrum Λ is simple if m(ζ) = 0 for all ζ ∈ Λ.

The spectrum of a mean periodic function is a closed set [6]. Here are some one di-
mensional examples of mean periodic functions. Every continuous periodic function f
is mean periodic. It satisfies f ∗ (δ0 − δT ) = 0 where T is the period and δa is the
Dirac measure at a. The function f(x) = expx is mean periodic while f(x) = sin x

x is
not mean periodic. Any global smooth solution of a partial differential equation with

constant coefficients is mean periodic. For instance the function ψ(x) = sin|x|
|x| , x ∈ R3,

is a mean periodic function since it satisfies Helmholtz equation ∆ψ + ψ = 0. This
example shows that there exist bounded mean periodic functions which are not almost
periodic functions.

3. Almost periodic functions

The reader who is familiar with the theory of almost periodic functions is invited to
skip this section and to jump to Theorem 3.8 which plays a role in the proof of Theorem
5.16.

Definition 3.1. A continuous function f : Rn → C is almost periodic (in the sense
given by Harald Bohr) if it is bounded and if for every positive ε there exists a relatively
dense set Λε of ε-almost periods τ for f .
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These two concepts (relatively dense and ε-almost period) are now defined. A subset
Λ ⊂ Rn is relatively dense if there exists a positive R such that for every x ∈ Rn the
ball B(x,R) centered at x with radius R contains at least a point λ ∈ Λ.

Let f be continuous and bounded on Rn. The L∞ norm of f is defined by

‖f‖∞ = sup
x∈Rn

|f(x)|. (3.1)

Let ε ∈ [0, 2). We say that τ ∈ Rn is an ε-almost period of f if

‖f( ·+τ)− f( · )‖∞ ≤ ε‖f‖∞. (3.2)

When equipped with the norm ‖f‖∞ the space of almost periodic functions on Rn is a
Banach space which will be denoted by B.

Let S ⊂ Rn be an arbitrary finite set. Then the trigonometric sum

P (x) =
∑
λ∈S

c(λ) exp(2πiλ · x) (3.3)

is an almost periodic function. H. Bohr proved the following theorem:

Theorem 3.2. Let f : Rn → C be an almost periodic function. Then for every ε > 0
there exist a finite set S(ε) ⊂ Rn and a trigonometric sum

Pε(x) =
∑

λ∈S(ε)

c(λ, ε) exp(2πiλ · x)

such that ‖f−Pε‖∞ ≤ ε.

Can we say more ? Theorem 3.7 will provide us with a more precise version of Theorem
3.2. Let f be an almost periodic function. Let cn be the inverse of the volume of the
unit ball. Then the mean value of f is defined by

M(f) = lim
R→∞

cnR
−n
∫
B(x,R)

f(y) dy (3.4)

and this limit is attained uniformly in x. Moreover for each ω ∈ Rn the product
exp(2πiω · x) f(x) is also an almost periodic function. This leads to the definition of

the Fourier coefficients f̂(ω) of an almost periodic function.

Definition 3.3. If ω ∈ Rn we set χω(x) = exp(2πiω ·x) and the corresponding Fourier
coefficient of f is defined by

f̂(ω) =M(χωf) (3.5)

where χω(x) is the complex conjugate of χω(x).

The notation f̂(ω) can be confusing since f̂(ω) is not the value at ω of the distributional

Fourier transform f̂ of f . This issue is discussed below (Theorem 3.8).

If f is almost periodic, so is |f |2, and one has

M(|f |2) =
∑
ω

|f̂(ω)|2. (3.6)

Therefore the set S of frequencies ω for which f̂(ω) 6= 0 is at most a numerable set.
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Definition 3.4. The set S = {ω ∈ Rn | f̂(ω) 6= 0 } is the spectrum of f .

The Fourier series of f is the formal series:

f(x) ∼
∑
ω∈S

f̂(ω) e2πiω·x. (3.7)

This Fourier series (3.7) of f becomes an ordinary Fourier series if f is extended as a
continuous function F on a suitable compact group G containing Rn as a dense subgroup.

Definition 3.5. Let Γ ⊂ Rn be a subgroup of Rn. A function χ : Γ → T is a weak
character on Γ if it maps the additive group Γ to the multiplicative group T of complex
numbers of modulus 1 and if it is a group homomorphism:

χ(x+ y) = χ(x)χ(y) (∀x, y ∈ Γ).

No continuity is required here. One can object that a strong character (i.e. a continuous
one) is also a weak character. This terminology issue will not affect the proofs which
are given in this essay. Let f be an almost periodic function and S be its spectrum. Let
Γ be the additive subgroup of Rn generated by S. Let G be the compact group of all
weak characters χ : Γ→ T. The topology on G is defined by the pointwise convergence
on Γ of the corresponding weak characters.

Lemma 3.6. The inclusion Γ ⊂ Rn yields the dual inclusion Rn ⊂ G since every
continuous character on Rn can be restricted to Γ. Then the almost periodic function f
extends by continuity to G. We denote by F the extension of f to G. Conversely if F is
a continuous function on G its restriction to Rn is an almost periodic function denoted
by f . Finally the ordinary Fourier series of F on G coincides with the Fourier series
of the almost periodic function f .

One can ignore S at the expense of replacing G by a much larger compact group. The

Bohr compactification of Rn is the compact group R̃n consisting of all weak characters

χ : Rn → T. As above we have Rn ⊂ R̃n and every almost periodic function f is the

restriction to Rn of a continuous function on R̃n.

If
∑
ω∈S |f̂(ω)| is finite the Fourier series expansion of f converges to f uniformly on Rn.

Moreover the distributional Fourier transform of f is the atomic measure
∑
ω∈S f̂(ω)δω

where δω is the Dirac mass at ω. If
∑
ω∈S |f̂(ω)| is infinite some summation procedures

generalizing Cesaro summation are needed to give a meaning to (3.7). H. Bohr proved
the following theorem:

Theorem 3.7. Let S ⊂ Rn be a numerable set. For every ε > 0 there exist a finite
subset S(ε) ⊂ S and a family βS(ε, ω), ω ∈ S, of weight factors with the following
properties

(a) 0 ≤ βS(ε, ω) ≤ 1
(b) limε↓0 βS(ε, ω) = 1 for each ω ∈ S
(c) βS(ε, ω) = 0 if ω does not belong to the finite set S(ε)
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(d) For every almost periodic function f whose spectrum is contained in S we have
‖f−Pε‖∞ → 0, ε→ 0, when

Pε(x) =
∑

ω∈S(ε)

βS(ε, ω) f̂(ω) exp(2πiω · x). (3.8)

Is the distributional Fourier transform f̂ of an almost periodic function f given by the

series
∑
ω∈S f̂(ω)δω where δω is the Dirac mass at ω? This is not true at this näıve

level. We cannot write f̂ =
∑
ω∈S f̂(ω)δω since this sum of Dirac masses is not defined

in general. If this sum is an atomic Radon measure then the two definitions of the
Fourier transform of an almost periodic function agree as indicated in the following
theorem:

Theorem 3.8. Let f be an almost periodic function. Let us denote by S the spectrum of

f and by f̂(ω), ω ∈ S, the Fourier coefficients of f . Then the three following properties
of f are equivalent

(1) For every R ≥ 1 the sum
∑
{ω∈S||ω|≤R}|f̂(ω)| is finite.

(2) The distributional Fourier transform of f is a Radon measure.

(3) The distributional Fourier transform of f is the atomic measure
∑
ω∈S f̂(ω)δω.

The implication (1) ⇒ (3) is interesting. Indeed the computation of the Fourier coef-

ficients f̂(ω), ω ∈ S, is often much easier than the determination of the distributional

Fourier transform of f . Let φ be a function in the Schwartz class such that φ̂ be com-

pactly supported and φ̂(0) = 1. Let φj = jnφ(jx), j ∈ N. Let fj(x) = f ∗ φj(x). The

Fourier coefficients of fj are φ̂(ω/j)f̂(ω). Then (1) implies that
∑
ω∈S |φ̂(ω/j)f̂(ω)| is

finite. Therefore fj(x) =
∑
ω∈S φ̂(ω/j)f̂(ω) exp(2πiω ·x) and the distributional Fourier

transform f̂j is the atomic measure
∑
ω∈S φ̂(ω/j)f̂(ω)δω. It suffices to let j tend to

infinity to conclude.

The implication (2)⇒ (1) will follow from Lemma 3.9.

Lemma 3.9. If the distributional transform of an almost periodic function f is a Radon

measure µ then for every ω ∈ Rn we have f̂(ω) = µ({ω}).

The proof is straightforward. Let φ(x) be an even compactly supported test function
such that φ(0) = 1. Then µ({ω}) = limε→0 I(ε) where I(ε) =

∫
φ(x−ωε ) dµ(x). But on

the Fourier transforms side we have

I(ε) = εn
∫
f(x)φ̂(εx) exp(−2πiω · x) dx

which tends to f̂(ω) since f is an almost periodic function.

Let us return to (2)⇒ (1). If µ is the distributional Fourier transform of f , Lemma
3.9 and (2) imply ∑

{ω∈S||ω|≤R}

|f̂(ω)| ≤ CR <∞

which ends the proof. Finally (3)⇒ (2) is obvious.
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Definition 3.10. The Banach algebra consisting of all almost periodic functions on Rn
whose Fourier series is absolutely convergent will be denoted by A(Rn).

The definition of an almost periodic sequence will be needed in this essay.

Definition 3.11. An almost periodic sequence ck, k ∈ Z, is the restriction to Z of
an almost periodic function. An almost periodic sequence belongs to A(Z) if it is the
restriction to Z of a function of A(R).

An almost periodic sequence can also be defined by the natural generalization of (3.2).

4. Kahane’s property

Let Λ ⊂ Rn be a closed and discrete set and let TΛ be the vector space consisting of all
trigonometric sums P (x) =

∑
λ∈Λ c(λ) exp(2πiλ · x) whose frequencies belong to Λ.

Definition 4.1. Property T (Λ) is satisfied if the space TΛ is not dense in C(Rn).

Property T (Λ) is satisfied if and only if there exists a non trivial compactly supported
Radon measure µ whose Fourier transform vanishes on Λ. This is the case if Λ is uni-
formly discrete or if Λ is a finite union of uniformly discrete sets. In the one dimensional
case Arne Beurling and Paul Malliavin proved the equivalence between T (Λ) and a finite
density condition [1].

Definition 4.2. If property T (Λ) is satisfied, the closure of TΛ in C(Rn) is denoted by
CΛ.

Lemma 4.3. A mean periodic function f whose spectrum is simple and contained in
Λ belongs to CΛ and the converse is true.

This follows from Malgrange’s theorem.

Lemma 4.4. Let us assume that T (Λ) is satisfied. Let f ∈ C(Rn) with a polynomial
growth at infinity. Let us assume that the distributional Fourier transform of f is a

sum of weighted Dirac measures supported by Λ : f̂ =
∑
λ∈Λ c(λ)δλ. Then f ∈ CΛ.

The proof is easy. Let φ be a function in the Schwartz class whose Fourier transform φ̂

is compactly supported and satisfies φ̂(0) = 1. Let φj(x) = jnφ(jx). Then f ∗ φj tends
to f uniformly on compact sets as j tends to infinity. Here the polynomial growth of
f at infinity is needed. But the Fourier transform of f ∗ φj is a finite sum of Dirac
measures. Therefore f ∗ φj is a trigonometric polynomial and f ∈ CΛ. The converse
implication is not true and a function f ∈ CΛ does not have in general a polynomial
growth at infinity. This fundamental problem is at the heart of this essay. We already
mentioned the following definition introduced by Jean-Pierre Kahane in [3]:

Definition 4.5. Let us assume that T (Λ) is satisfied. Property Q(Λ) holds if every
f ∈ CΛ is an almost periodic function in the sense of Harald Bohr.

An equivalent definition of the property Q(Λ) was given by Kahane in [3]:
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Lemma 4.6. Λ ⊂ Rn be a uniformly discrete set. Then Q(Λ) is equivalent to the
following condition: there exist a compact set K and a constant C such that for every
finite trigonometric sum

f(x) =
∑
λ∈Λ

c(λ) exp(2πiλ · x)

whose frequencies belong to Λ one has

‖f‖∞ ≤ C sup
x∈K
|f(x)|. (4.1)

This was our first problem about trigonometric sums. A dual version of Lemma 4.6 is
the following:

Lemma 4.7. Let Λ ⊂ Rn be a uniformly discrete set. Then Q(Λ) is equivalent to
the following condition: there exist a compact set K and a constant C such that for
every x0 ∈ Rn there exists a complex Radon measure µx0

enjoying the following three
properties

(i) µx0 is supported by K
(ii) the total mass ‖µx0

‖ of µx0
does not exceed C

(iii) µ̂x0
(λ) = exp(2πix0 · λ), ∀λ ∈ Λ.

We now turn to our second problems about trigonometric sums.

Definition 4.8. Let Λ ⊂ Rn be a closed and discrete set. Then Λ is mild if there
exist a continuous weight function ω(x) ≥ 1 with a polynomial growth at infinity and a
compact set K ⊂ Rn such that for every trigonometric sum P ∈ TΛ and every x ∈ Rn
we have

|P (x)| ≤ ω(x) sup
y∈K
|P (y)|. (4.2)

This definition will be slightly modified in Section 9, Definition 9.2. This can be given
a simpler formulation as the following theorem shows:

Theorem 4.9. Let ω ≥ 1 be a continuous function defined on Rn. Then the following
properties of a locally finite set Λ are equivalent ones:

(a) Every mean periodic function CΛ is 0(ω) at infinity.
(b) There exist a compact set K and a constant C such that for every P ∈ TΛ and

every x ∈ Rn one has:

|P (x)| ≤ ω(x) sup
y∈K
|P (y)|. (4.3)

The implication (b) ⇒ (a) is trivial since (4.3) extends by continuity to every f ∈ CΛ.
It remains to prove that (a)⇒ (b). If (b) is not satisfied for every T > 1, M > 1, ε > 0
there exist a P ∈ TΛ and a x ∈ Rn such that

sup
|x|≤T

|P (x)| ≤ ε, |P (y)| ≥Mω(x). (4.4)

Then we define CΛ by f =
∑∞

0 Pj where Pj satisfies (4.4) for a suitable sequence
(εj , Tj ,Mj), j ∈ N. It suffices to impose εj = 2−j , Tj+1 ≥ Tj + |y0| · · · + |yj | and
Mj+1 ≥ 2j(1 + ‖P0‖∞ + · · ·+ ‖Pj‖∞)−

∑∞
j+2 εm. Then

8
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|f(yj+1)| ≥Mjω(yj+1)−
j∑
0

‖Pm‖∞ −
∞∑
j+2

εm ≥ (Mj+1 − 1)ω(yj+1) (4.5)

which ends the proof.

Let α > 0 be irrational. A nontrivial example of a uniformly discrete mild set is

Λα = −N ∪ αN = {. . . ,−3,−2,−1, 0, α, 2α, 3α, . . .}. (4.6)

This set does not satisfy Kahane’s condition (Theorem 7.7). However Λα is mild and

every f ∈ CΛα is O(
√
|x|) at infinity. This will be proved in Section 9. More generally a

gentle set (Definition 5.18 below) is mild (Theorem 9.3). But there exist some uniformly
discrete sets Λ for which (4.3) does not hold whatever be the compact set K and the
weight ω. If Λ is not uniformly discrete Kahane’s property Q(Λ) cannot be satisfied.
However (4.3) makes sense.

Let α > 0, α /∈ Q, β > 0, and λ
(α,β)
k = k + β sin(2παk), k ∈ Z. Let

Λα,β = {λ(α,β)
k | k ∈ Z }. (4.7)

The content of Theorem 6.3 of [7] is that Kahane’s property Q(Λα,β) does not hold. In
other terms we have:

Theorem 4.10. Let Λα,β be defined by (4.7). Then there exists a mean periodic func-
tion g whose spectrum is simple and contained in Λα,β and which is not almost periodic.

But it will be proved in Section 9 that the set Λα,β is mild and that every f ∈ CΛα,β is

O(
√
|x|) at ∞.

Here is the first half of the proof of Theorem 4.10. If β |sin(πα)| ≥ 1/2, Λα,β is not
uniformly discrete and Q(Λα,β) does not hold. Let us assume β |sin(πα)| < 1/2 and
prove Theorem 4.10. The function g is not constructed explicitly in this essay but
instead an indirect approach is used. Let δa be the Dirac measure at a and let us
consider the atomic measure

σα,β =
∞∑
−∞

δ
λ
(α,β)
k

. (4.8)

This measure σα,β is an almost periodic measure (Lemma 5.14). Moreover its distri-
butional Fourier transform σ̂α,β is also an atomic measure (Theorem 5.16). But σ̂α,β
is not a translation bounded measure (Theorem 5.16). This immediately follows from
Paul Cohen’s theorem (Theorem 5.17).

We then argue by contradiction. If Kahane’s property Q(Λα,β) was satisfied then every
measure µ whose spectrum is contained in Λα,β would be an almost periodic measure
(Proposition 5.9). This is not the case since σ̂α,β is not an almost periodic measure (it
is not even translation bounded). This proof is not complete since Proposition 5.9 and
Theorem 5.16 are not yet proved. This will be achieved in sections 5 and 6. Then the
proof of Theorem 4.10 will be complete. The main ingredients of this proof are (a) the
study of almost periodic measures and (b) the computation of the distributional Fourier
transform of an almost periodic measure.

9
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Kahane’s property Q(Λα,β) does not hold. Moreover the weaker property Q(Λα,β , 1)
investigated by Kahane in [3] does not hold either. We do not know if Q(Λα,β , p) holds
for p 6= 2. Property Q(Λ, p) is defined in Section 8.

5. Almost periodic measures

The tools needed to prove that σ̂α,β is an atomic measure are developed in this section.
Let D denote the space of infinitely differentiable functions with compact support.
Laurent Schwartz proposed the following definition of an almost periodic distribution.

Definition 5.1. A distribution S is almost periodic if for every testing function φ ∈ D
the convolution product S ∗φ is an almost periodic function in the sense given by Bohr.

This naturally extends to almost periodic measures. The class D of testing functions is
replaced by the class E of compactly supported continuous functions.

Definition 5.2. A Radon measure µ on Rn is almost periodic if for every compactly
supported continuous function g the convolution product µ ∗ g = f is an almost periodic
function in the sense given by Bohr.

If µ is an almost periodic measure the closed graph theorem implies the following:

sup
x∈Rn

∫
B(x)

|dµ| <∞. (5.1)

Here B(x) is the ball centered at x with radius 1. We say that µ is a translation bounded
measure and denote by ‖µ‖∗ the norm defined by the LHS of (6.1). We then have:

Lemma 5.3. A translation bounded measure µ is an almost periodic measure if and
only if µ is an almost periodic distribution.

The Fourier coefficients of an almost periodic measure µ are defined as follows. Let g
be a compactly supported continuous function such that

∫
g(x) dx = 1. Then µ ∗ g is

an almost periodic function.

Lemma 5.4. We set µ̂(0) =M(µ ∗ g) and this does not depend on g.

If µ is an almost periodic measure and if f is an almost periodic function then the
product fµ is an almost periodic measure. If ω ∈ Rn we set χω(x) = exp(2πiω · x) and
the Fourier coefficients of µ are defined by µ̂(ω) =M(χωµ). The spectrum of µ is the
set S = {ω | µ̂(ω) 6= 0 }.
Moreover an almost periodic measure µ is a continuous linear form on the Banach space
of almost periodic functions. The pairing is defined by 〈µ, f〉 = M(fµ). Therefore

µ defines a Radon measure µ̃ on the Bohr compactification R̃n of Rn and we have

µ̂(ω) = ̂̃µ(ω), ∀ω ∈ Rn. This remark will be used later on.

Theorem 3.8 extends to almost periodic measures.

Theorem 5.5. Let σ be an almost periodic measure. Let us denote by S the spectrum of
σ and by σ̂(ω), ω ∈ S, the Fourier coefficients of σ. Then the three following properties
of σ are equivalent

10
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(1) For every R ≥ 1 the sum
∑
{ω∈S||ω|≤R}|σ̂(ω)| is finite.

(2) The distributional Fourier transform of σ is a Radon measure.
(3) The distributional Fourier transform of σ is the atomic measure

∑
ω∈S σ̂(ω)δω.

To prove Theorem 5.5 it suffices to apply Theorem 3.8 to f = σ ∗ φ where φ is a test
function in the Schwartz class S(Rn).

Definition 5.6. A tempered distribution σ is a Poisson measure if both σ and its
distributional Fourier transform σ̂ are atomic measures.

In a preliminary version of this essay a Poisson measure was defined as an almost peri-
odic measure whose distributional Fourier transform is also an almost periodic measure.
Let σ be a Poisson measure. Then σ =

∑
λ∈Λ a(λ)δλ and σ̂ =

∑
s∈S b(s)δs. This implies

the following variant of the Poisson summation formula∑
λ∈Λ

a(λ)f̂(λ) =
∑
s∈S

b(s)f(s) (5.2)

where f is a test function.

Lemma 5.7. Let us assume that both σ and σ̂ are almost periodic measures. Then σ
is a Poisson measure.

This follows from Theorem 5.5.

Lemma 5.8. Let σ be a translation bounded Poisson measure. Then σ is an almost
periodic measure.

Let φ be a test function in the Schwartz class whose Fourier transform φ̂ is compactly

supported. Then the product σ̂φ̂ has a finite total mass. Therefore σ ∗ φ is an almost
periodic function. Let g be a compactly supported continuous function. There exists a
sequence φj tending to g for the norm

∑
k∈Zn sup|x−k|≤1|f(x)|. Since σ is translation

bounded we can pass to the limit and σ ∗ g is an almost periodic.

We then have

Proposition 5.9. Let Λ ⊂ Rn be a uniformly discrete set and let us assume that Q(Λ)
holds. Let µ be a Radon measure such that (a) µ is a tempered distribution and (b) the
distributional Fourier transform µ̂ of µ is an atomic measure supported by Λ. Then µ
is an almost periodic measure.

Before proving this fact let us stress that it does not characterize Kahane’s Q(Λ) prop-
erty. A counter example is given in Section 8. The proof of Proposition 5.9 begins with
the following lemma:

Lemma 5.10. If g is a compactly supported continuous function then f = µ ∗ g is a
mean periodic function whose spectrum is simple and contained in Λ.

If Lemma 5.10 is accepted then property Q(Λ) implies that f is an almost periodic
function which ends the proof of Proposition 5.9. Let us prove Lemma 5.10. Since Λ is
uniformly discrete there exists a non trivial compactly supported h ∈ L2(Rn) such that

ĥ = 0 on Λ [4]. Then f ∗ h = µ ∗ g ∗ h and the distributional Fourier transform of f ∗ h

11
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is the product µ̂ ĝ ĥ. But µ̂ is a sum of Dirac measures on Λ. Therefore µ̂ ĥ = 0 and
f ∗ h = 0. The function f satisfies a non trivial convolution equation f ∗ h = 0 where
h is compactly supported. Then f is a mean periodic function. The Fourier transform

of µ ∗ g is the product µ̂ ĝ. Therefore f̂ is an atomic measure supported by Λ and the
spectrum of µ ∗ g is simple. Lemma 5.10 is proved.

Lemma 5.11. Let σ be an almost periodic Poisson measure. Then for ω ∈ Rn we have

σ̂(ω) = σ̂({ω}). (5.3)

This lemma looks tautological but is not. In the left-hand side we meet a Fourier
coefficient of an almost periodic measure and in the right-hand side a mass of an atomic
measure. However Lemma 5.11 is an easy corollary of Lemma 3.9.

Theorem 5.12. Let Λ ⊂ R a closed and discrete set and let σΛ =
∑
λ∈Λ δλ. Then the

following two properties of Λ are equivalent

(a) σ̂Λ is an almost periodic measure

(b) Λ =
⋃N

1 (αjZ + βj) where αj > 0, βj ∈ R.

The implication (b)⇒ (a) is trivial. Let us prove (a)⇒ (b). Let µ be the inverse Fourier

transform of σΛ. Then µ defines a Radon measure µ̃ on the Bohr compactification R̃ of
R. By Lemma 5.11 the Fourier coefficients of µ̃ are the masses of σΛ. But these masses

are 0 or 1. Therefore µ̃ is an idempotent measure on R̃. Paul Cohen’s theorem ends
the proof (see also Theorem 5.17 below).

The definition of almost periodic measures is very demanding. If Λ ⊂ Rn is a model
set which is not a lattice [8] then σΛ =

∑
λ∈Λ δλ is not an almost periodic measure.

This was observed by J. Lagarias. For example let bxc be the integral part of x and let
{x} = x− bxc be the fractional part of x. Let α be an irrational number and let

λk = k + {αk}, k ∈ Z. (5.4)

Then
σΛ =

∑
k∈Z

δλk (5.5)

is not an almost periodic measure.

The conclusion changes dramatically if the sawtooth function x 7→ {x} is replaced by
an almost periodic function θ ∈ A.

Definition 5.13. We now assume that λk = k+ θ(k), k ∈ Z, where θ ∈ A(Z) (Defini-
tion 3.6). Let

σθ =
∑
k∈Z

δλk . (5.6)

Then Λθ is the support of the measure σθ.

The mapping θ 7→ σθ will be studied in this essay. The measure σθ is not given in
general by

∑
λ∈Λθ

δλ since λk = λl, k 6= l, can happen. We have σθ =
∑
λ∈Λθ

m(λ)δλ
where the multiplicities m(λ) satisfy m(λ) ∈ N and 1 ≤ m(λ) ≤ C for some constant
C.

12
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Lemma 5.14. Let θ(k), k ∈ Z be an almost periodic sequence. Then the measure σθ
is an almost periodic measure.

Then let φ be a compactly supported continuous function and let f(x) =
∑
φ(x− k −

θ(k)). We need to show that f(x) is an almost periodic function. If τ ∈ Z we obviously
have

f(x+ τ) =
∑
k∈Z

φ(x− k − θ(k + τ)). (5.7)

But θ is an almost periodic sequence. Therefore there exists a relatively dense set of
integers Mε such that |θ(k + τ) − θ(k)| ≤ ε uniformly in k. It now suffices to observe
that the series defining f(x) is locally finite. This concludes the proof. The following
lemma will be needed in this essay.

Lemma 5.15. If f is an almost periodic function we have

M(fσθ) = lim
N→∞

1

2N + 1

N∑
−N

f(λk). (5.8)

Finally we have:

Theorem 5.16. Let us assume θ ∈ A(Z). Then the almost periodic measure σθ defined
by (5.6) is a Poisson measure. However σ̂θ is not a translation bounded measure unless
θ(k), k ∈ Z, is a periodic sequence.

The first assertion still holds if σθ is replaced by τθ =
∑
k∈Z c(k)δλk and if the sequence c

belongs to A(Z). The first assertion in Theorem 5.16 will be proved in Section 6. Let us
consider the second assertion. If ‖θ‖∞ < 1/2 we have λk 6= λl if k 6= l. Then Theorem
5.12 and Lemma 5.8 imply that σ̂θ cannot be an almost periodic measure. This simple
proof shall be slightly modified if multiplicities occur in Λθ. Here is the argument. As
it was observed above σθ =

∑
λ∈Λθ

m(λ)δλ where the multiplicities m(λ) ∈ N belong to

[1, C] for some constant C. We then use the following result (Theorem 4.10 of [5]).

Theorem 5.17. Let Λ ⊂ R be a closed and discrete set and let us assume that the
complex numbers m(λ), λ ∈ Λ, belong to a finite set F ⊂ C \ {0}. Let σ be the Radon
measure σ =

∑
λ∈Λm(λ)δλ. Let us assume that the distributional Fourier transform σ̂

is a Radon measure µ which satisfies for every R ≥ 1

|µ|([−R,R]) ≤ CR. (5.9)

Then

Λ = F 4
N⋃
1

(αjZ + βj) (5.10)

where αj > 0, βj ∈ R, F is finite and 4 denotes the symmetrical difference.

But Λθ cannot be a finite union of arithmetical progressions up to a finite set unless θ
is a periodic sequence. Therefore σ̂θ cannot be a translation bounded measure unless θ
is a periodic sequence.

The following definition is used in Section 7.

13
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Definition 5.18. A uniformly discrete set Λ ⊂ Rn is a gentle set if there exist a
uniformly discrete set M containing Λ and an atomic measure σ =

∑
m∈M c(m)δm

such that:

(a) Λ = {m ∈M | c(m) = 1 }
(b) The distributional Fourier transform σ̂ of σ is a Radon measure.

The class of gentle sets contains lattices and quasi-crystals. In the following section it
will be proved that Λα,β is a gentle set. More generally Λθ (Definition 5.13) is a gentle
set. In Section 9 it will be proved (Theorem 9.3) that most gentle sets are mild sets
(Definition 4.8). We show in Section 7 that a gentle set Λ satisfies Kahane’s property
Q(Λ) whenever σ̂ is a translation bounded Radon measure (Theorem 7.1).

6. End of the proof of Theorem 5.16

This proof relies on Theorem 3.8. We already know that σθ is an almost periodic
measure. Instead of computing the distributional Fourier transform of σθ, which is not
easy, we compute the Fourier coefficients of the almost periodic measure σθ and then
check condition (1) of Theorem 3.8.

For every real number ω we compute the Fourier coefficient σ̂θ(ω) of the almost periodic
measure σθ. Lemma 5.15 implies that it suffices to average over Z. From now on the
operator M denotes the mean value over Z. Then we have:

σ̂θ(ω) =M
[
exp
(
−2πiω(k + θ(k))

)]
. (6.1)

But

exp
(
−2πiω(k + θ(k))

)
= exp(−2πiωk)

∞∑
0

(−2πiω)m

m !
(θ(k))m (6.2)

and the RHS converges uniformly in k. Taking the mean values with respect to k yields

M
[
exp
(
−2πiω(k + θ(k))

)]
=
∞∑
0

(−2πiω)m

m !
θ̂m(ω). (6.3)

We have
∑
ω|θ̂m(ω)| ≤ ‖θ‖mA since A is a Banach algebra. Finally∑

|ω|≤R

|σ̂θ(ω)| ≤
∞∑
0

(2πR)m

m !

∑
|ω|≤R

|θ̂m(ω)|

≤
∞∑
0

(2πR)m

m !
‖θ‖mA = exp(2πR‖θ‖A).

Corollary 6.1. The distributional Fourier transform σ̂θ of the almost periodic measure
σθ is the atomic measure

∑
ω σ̂θ(ω)δω.

Corollary 6.1 implies the first assertion in Theorem 5.16. The second assertion was
already proved. Therefore the proof of Theorem 5.16 is complete.

14
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Let S the spectrum of θ and Γ ⊂ R be the additive subgroup generated by S. Let G be
the compact group which is the dual of Γ. Then θ extends continuously to G. By an
abuse of notations this extension is also denoted by θ. Then (6.3) can be rewritten as∫

G

exp
[
−2πix(y + θ(y))

]
dy =

∞∑
0

(−2πix)m

m !

∫
G

exp(−2πixy)θm(y) dy. (6.4)

Both sides of (6.4) vanish if x /∈ Γ. Therefore we shall have x ∈ Γ in (6.4) and the
support of σ̂θ is contained in Γ.

Here is an example of the identity (6.4). Let T = R/Z the torus and let us assume that
θ : Tn → R belongs to the Wiener algebra A(Tn). Let α1, . . . , αn be n real numbers
such that 1, α1, . . . , αn, are linearly independent over Q. Let λk = k+ θ(α1k, . . . , αnk)
and σθ =

∑
k∈Z δλk .

Proposition 6.2. The distributional Fourier transform of σθ is the atomic measure
defined by

σ̂θ =
∑
p∈Zn

∑
q∈Z

γ(p, q + α · p)δq+α·p (6.5)

where α = (α1, . . . , αn) and

γ(p, q + α · p) =

∫
Tn

exp
[
−2πi

(
p · u+ (q + α · p)θ(u)

)]
du. (6.6)

Theorem 6.3. Let us assume that the real valued function θ belongs to the Wiener
algebra A(Z). Then Λθ = {λk = k + θ(k) | k ∈ Z } does not satisfy Kahane’s property
Q(Λ) unless the sequence θ(k), k ∈ Z, is periodic.

Theorem 6.3 implies Theorem 4.10. Theorem 6.3 is an obvious consequence of Theorem
5.16 as it will be shown now. Reasoning by contradiction let us assume that Q(Λ) holds.
Then Q(−Λ) holds as well. Proposition 5.9 applied to the Radon measure µ = σ̂θ would
imply that µ is an almost periodic measure. We already know (Theorem 5.16) that it
is not the case unless θ is a periodic sequence. Therefore Λθ does not satisfy Kahane’s
Q(Λ) property unless θ is a periodic sequence. It was announced for the special case
θ(k) = sin(2παk) and α /∈ Q in [7].

7. Gentle sets

Some gentle sets satisfy Kahane’s property as the following theorem shows.

Theorem 7.1. Let σ =
∑
m∈M c(m)δm be an atomic measure supported by a uniformly

discrete set M ⊂ Rn. Let Λ = {m ∈ M | c(m) = 1 }. Let us assume that the distri-
butional Fourier transform σ̂ of σ is a translation bounded Radon measure. Then Λ
satisfies Kahane’s property Q(Λ).

We cannot have M = Λ unless Λ is a finite union of lattices up to a finite set (Theorem
5.17). The proof of Theorem 7.1 uses a characterization of Kahane’s property given by
Lemma 7.2. For a closed set E ⊂ Rn let B(E) denote the Wiener algebra consisting of
all restrictions to E of Fourier–Stieltjes transforms of bounded complex Radon measures
on Rn [10], the norm in B(E) being the quotient norm.
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Lemma 7.2. Let Λ be uniformly discrete. Then the following two properties are equiv-
alent ones

(a) Q(Λ) holds
(b) There exist a neighborhood V of 0 and a constant C such that (1) the sets

V +λ, λ ∈ Λ, are pairwise disjoint and (2) for every y ∈ Rn the function Fy(x)
defined on E = Λ + V by Fy(λ + s) = exp(2πiλ · y), λ ∈ Λ, s ∈ V , satisfies
‖Fy‖B(E) ≤ C.

This is proved in [8], Theorem 6.6. Let us prove Theorem 7.1. Let B be a ball of radius
β > 0 centered at 0 and such that the translated balls m + B, m ∈ M , are pairwise
disjoint. Let V be a smaller ball of radius α < β centered at 0. Let φ be an even C∞
function such that φ = 1 on V and φ = 0 outside B. Let E = Λ + V . We consider

Fy = (χyσ) ∗φ. Then F̂y = µyφ̂ where µ is the inverse Fourier transform of σ and µy is

µ translated by y. Since µ is translation bounded the total mass of µyφ̂ does not exceed
a constant C. Therefore ‖Fy‖B(E) ≤ C. But Fy(λ+ s) = χy(λ), ∀λ ∈ Λ, ∀s ∈ V . Then
Lemma 7.2 concludes the proof.

Theorem 7.3. A model set satisfies Kahane’s property.

This is known from [9] but the proof which is given here is new. The proof of Theorem
7.3 relies on the following lemma:

Lemma 7.4. Let Λ be a model set. There exist a model set Λ′ containing Λ and a
Poisson measure σ =

∑
λ∈Λ′ c(λ)δλ such that c(λ) = 1, ∀λ ∈ Λ. Moreover σ̂ is also an

almost periodic measure.

The proof relies on the definition of a model set which is given now for the reader’s
convenience. Let m,n ∈ N, N = m + n, and Γ ⊂ RN be a lattice: Γ = A(ZN ) where
A ∈ GLN (R). For (x, t) ∈ RN = Rn × Rm, we write p1(x, t) = x, p2(x, t) = t. Let us
assume that p1 once restricted to Γ is a 1–1 mapping with a dense range. The same is
required from p2.

Definition 7.5. Let I ⊂ Rm be a Riemann integrable compact set (a window) with a
positive measure. Then the model set ΛI ⊂ Rn is defined by

ΛI = { p1(γ) | γ ∈ Γ, p2(γ) ∈ I }. (7.1)

To prove Lemma 7.4 it suffices to introduce a larger window J which contains a neigh-
borhood of I and an even C∞ function w such that w = 1 on I and w = 0 outside J .
We now prove that the atomic measure

σ =
∑
γ∈Γ

w(p2(γ))δp1(γ) (7.2)

is a Poisson measure. Let φ be a test function in the Schwartz class. Let us compute

〈σ, φ̂〉 =
∑
γ∈Γ w(p2(γ))φ̂(p1(γ)). Poisson summation formula applied to the lattice Γ

and to the dual lattice Γ∗ yields

〈σ, φ̂〉 = cΓ
∑
γ∗∈Γ∗

ŵ(p2(γ∗))φ(−p1(γ∗)) = 〈σ̂, φ〉. (7.3)
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We have σ̂ = cΓ
∑
γ∗∈Γ∗ ŵ(−p2(γ∗))δp1(γ∗). Therefore σ̂ is a translation bounded atomic

measure. Finally σ is a Poisson measure which ends the proof of Lemma 7.4 and of
Theorem 7.3.

Let θ ≥ 3 be a real number, let q ≥ 1 be an integer, and let Λq be the set of all real
numbers of the form λ = ±θj1±θj2±· · ·±θjq where the exponents 0 ≤ j1 < j2 < · · · < jq
are arbitrary integers. We then have:

Theorem 7.6. For every integer q ≥ 1 the set Λq satisfies Kahane’s property.

Let us observe that Λq ⊂ Λq+1 and the union ∪Λq satisfies Kahane’s property if and
only if θ is a Pisot–Thue–Vijayaraghavan number. Let us sketch the proof of Theorem
7.6. The details will appear in a forthcoming paper.

We consider the finite product Pj(x) =
∏j

0(1 + cos(2πθkx)) and set µj = Pj dx. Then
µj converges weakly to the Riesz product µ. This Riesz product is an almost periodic
measure and the distributional Fourier transform of µ is an atomic measure σ to which
Theorem 7.1 can be applied. The support M of σ is the set of all finite sums m =
±θj1 ± θj2 ± · · · ± θjq where 0 ≤ j1 < j2 < . . . < jq and q is now an arbitrary integer.
We then have σ({λ}) = 2−q, λ ∈ Λq. This implies that Theorem 7.1 shall be applied
to the measure 2qσ.

This section is concluded with the proof of a theorem which was announced in [7]. If
α /∈ Q, Λ = Z ∪ αZ cannot satisfy Kahane’s property since Λ is not uniformly discrete.
Is it the only obstruction? Let us assume that M ⊂ Z∪αZ is uniformly discrete. Does
Q(M) hold ? A counter example is given by Theorem 7.7.

Theorem 7.7. Let α > 0 be a real number. Then

Λα = −N ∪ αN = {. . . ,−4, −3, −2, −1, 0, α, 2α, 3α, 4α, . . .}

satisfies Kahane’s Q(Λ) property if and only if α ∈ Q.

If α ∈ Q then Λα is contained in a lattice and trivially satisfies Kahane’s property.
If α /∈ Q Theorem 7.7 follows from a more general fact. The characterization of the
subsets Λ of Z ∪ αZ which satisfy Kahane’s condition Q(Λ) is given by the following
theorem:

Theorem 7.8. Let us assume that two uniformly discrete sets Λ1 ⊂ Rn and Λ2 ⊂ Rn
both satisfy Kahane’s property Q(Λ). If there exists a complex Radon measure τ with a
finite total mass such that τ̂ = 1 on Λ1 and τ̂ = 0 on Λ2, then Λ = Λ1∪Λ2 still satisfies
Q(Λ).

The converse implication is true in one dimension when Λ1 ⊂ Z, Λ2 ⊂ αZ, and
α /∈ Q : if Λ = Λ1 ∪ Λ2 satisfies Kahane’s condition Q(Λ) then there exists a complex
Radon measure τ with a finite total mass such that τ̂ = 1 on Λ1 and τ̂ = 0 on Λ2.

The proof of the first assertion is not difficult. Let P be a trigonometric sum whose
frequencies belong to Λ. Then P = P1 + P2 where the frequencies of P1 belong to Λ1

and the frequencies of P2 belong to Λ2. We have P1 = P ∗ τ . But τ = σ + ρ where

17



DKNVS Skrifter 2, 2018

the total mass of ρ does not exceed ε and σ is supported by a compact set L. But
P1 = P ∗ τ = P ′ + P ′′, P ′ = P ∗ σ, P ′′ = P ∗ ρ. Then

sup
x∈K1

|P1(x)| ≤ sup
x∈K1

|P ′(x)|+ sup
x∈K1

|P ′′(x)|

≤ C sup
x∈L
|P (x)|+ ε‖P‖∞.

But we know that ‖P1‖∞ ≤ C1 supx∈K1
|P1(x)|. Altogether it implies

‖P1‖∞ ≤ C1C sup
x∈L
|P (x)|+ εC1‖P‖∞. (7.4)

We have a similar estimate for P2. Then

‖P‖∞ ≤ ‖P1‖∞ + ‖P2‖∞ ≤ C3 sup
x∈L
|P (x)|+ ε(C1 + C2)‖P‖∞. (7.5)

Finally (7.5) ends the proof if ε(C1 + C2) < 1.

We now consider the second assertion and assume Q(Λ). Using Lemma 4.7 with x0 =
m ∈ Z we know that there exists a measure µm carried by K and such that ‖µm‖ ≤ C
and µ̂m(λ) = exp(2πimλ). Given a complex number z with |z| = 1 we select a sequence
mj such that exp(2πimjα) → z, j → ∞. Using a standard compactness argument we
find a measure µz carried by K such that µ̂z(k) = 1, k ∈ Λ1, while µ̂z(αk) = zk, k ∈ Λ2.
It then suffices to average with respect to z to obtain the required measure τ . The
averaging procedure can be achieved in two steps. First we let zk = exp(2πik/N) be a
Nth root of unity, we then average µzk on k ∈ {0, . . . , N − 1} to obtain a measure νN
and finally τ is a limit of a subsequence νNj .

We now conclude the proof of Theorem 7.7. It uses the following lemma:

Lemma 7.9. Let τ be a complex Radon measure with a finite total mass and let τ =
τ0 + ρ the decomposition of τ into an atomic component τ0 and a continuous measure
ρ. If τ̂ = 0 on N then τ̂0 = 0 on Z.

Indeed we have τ̂0(k) = rk, k ∈ N, and limN→∞N−1
(∑N

1 |rk|2
)

= 0. But τ̂0(k) is
almost periodic on Z. It implies τ̂0(k) = 0, k ∈ Z, as announced.

To prove Theorem 7.7 we argue by contradiction and suppose that Q(Λ) holds and
α /∈ Q. Then Theorem 7.7 implies the existence of a bounded Radon measure τ such
that τ̂(k) = 0, k ∈ −N, and τ̂(αk) = 1, k ∈ N. Lemma 7.9 yields τ̂0(k) = 0, k ∈ Z
and τ̂0(αk) = 1, k ∈ Z. But this is impossible since τ̂0(k) is uniformly continuous. This
ends the proof of Theorem 7.7.

Here is an example where the first statement of Theorem 7.7 is used.

Theorem 7.10. Let α /∈ Q, ε > 0, and let Λα,ε = Z ∪ (αZ \Bε) where Bε is the set of
all αk ∈ αZ whose distance to Z does not exceed ε. Then Q(Λα,ε) holds.

We set Λ1 = Z and Λ2 = αZ \ Bε. We shall construct an atomic measure τ with a
finite total mass such that w = τ̂ = 1 on Λ1 and w = 0 on Λ2. Let w be the 1−periodic
function whose restriction to [−1/2, 1/2] is a C∞ function supported by [−ε, ε] which is
equal to 1 on [−ε/2, ε/2]. Then w = 1 on Z+ [−ε/2, ε/2] and w = 0 outside Z+ [−ε, ε].
Therefore w = 1 on Λ1 and w = 0 on Λ2. Finally the Fourier series expansion of w is
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absolutely convergent. We have w = τ̂ where τ is an atomic measure with a finite mass
which ends the proof.

8. Kahane’s problem for Lp−norms

In his pioneering paper [3] Kahane proposed the following generalization of the property
Q(Λ). Given p ∈ [1,∞] and a uniformly discrete set Λ ⊂ Rn, property Q(Λ, p) holds if
there exist a compact set K and a constant C such that for every trigonometric sum

f(x) =
∑
λ∈Λ

c(λ) exp(2πiλ · x) (8.1)

whose spectrum is contained in Λ we have

sup
y∈Rn

(∫
K+y

|f(x)|p dx
)1/p

≤ C
(∫

K

|f(x)|p dx
)1/p

. (8.2)

Then Q(Λ,∞) coincides with Q(Λ). Property Q(Λ, 2) holds if and only if Λ is uniformly
discrete. More precisely let K be a ball of radius R. Then (8.2) is true when p = 2 and
R > R(Λ).

Theorem 8.1. Let us assume Q(Λ, 1). Then every Radon measure µ which is a tem-
pered distribution and whose distributional Fourier transform is a measure supported by
Λ is an almost periodic measure.

The proof is not difficult. It depends on the following lemmas.

Lemma 8.2. If Q(Λ, 1) holds there exist a compact set K and a constant C such that
for every almost periodic function f whose spectrum is contained in Λ we have

sup
y∈Rn

∫
K+y

|f(x)| dx ≤ C
∫
K

|f(x)| dx. (8.3)

To prove (8.3) it suffices to observe that f is a uniform limit of trigonometric sums
whose frequencies belong to Λ.

Lemma 8.3. If Λ is uniformly discrete and if σ =
∑
λ∈Λ c(λ)δλ is a tempered distri-

bution there exist an integer N and a constant C such that

|c(λ)| ≤ C(1 + |λ|)N (∀λ ∈ Λ). (8.4)

Lemma 8.3 follows from the definition of a tempered distribution. We now prove The-
orem 8.1. Let φ be a non negative C∞ function supported by the unit ball and such
that

∫
φdx = 1. Let φm(x) = mnφ(mx), m ∈ N. Then (8.4) implies that the Fourier

transform of fm = µ ∗ φm is an atomic measure carried by Λ with a finite total mass.
Therefore fm is an almost periodic function and Lemma 8.2 yields

sup
y∈Rn

∫
K+y

|fm(x)| dx ≤ C
∫
K

|fm(x)| dx. (8.5)

But the RHS of (8.5) does not exceed |µ|(K + B) where B is the unit ball. The
measure µ is the weak limit of the sequence fm. We have supy∈Rn(

∫
K+y
|fm(x)| dx) ≤

C|µ|(K+B). Therefore supy∈Rn |µ|(K+y) ≤ C|µ|(K+B) and µ is translation bounded.
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Let g be a compactly supported continuous function. Since µ is translation bounded
F = µ∗g is uniformly continuous. The convolution products F ∗φm are almost periodic
functions since their Fourier transforms are atomic measures with a finite total mass.
Moreover the sequence F ∗φm converges uniformly to F . Finally F is an almost periodic
function and µ is an almost periodic measure.

Corollary 8.4. If Λα,β is defined by (4.7) Q(Λα,β , 1) does not hold.

To establish this fact it suffices to replace Proposition 5.9 by Theorem 8.1 in the proof
of Theorem 4.10.

Proposition 8.5. Q(Λ, 1) does not imply Q(Λ).

Here is a one dimensional counter example. One starts with E = { 3j + 2k | 0 ≤ k ≤
j, j, k ∈ N }. Then E is a Λ(2) set. It means that there exists a constant C such
that ‖P‖2 ≤ C‖P‖1 for every trigonometric sum P (x) =

∑
k∈E c(k) exp(2πikx). Here

‖P‖1 =
∫ 1

0
|P (x)| dx and ‖P‖2 = (

∫ 1

0
|P (x)|2 dx)1/2. Let rj,k be a sequence of positive

real numbers such that (a)
∑

0≤k≤j |rj,k| = β < 1
4π and (b) the collection {0} ∪ { rj,k |

0 ≤ k ≤ j, j, k ∈ N } is linearly independent over Q. Then we have:

Theorem 8.6. Let λj,k = 3j + 2k + rj,k , 0 ≤ k ≤ j, j, k ∈ N. The set Λ = {λj,k}
satisfies Q(Λ, 1) but not Q(Λ).

The following lemma will be used in the proof of Theorem 8.6

Lemma 8.7. For every 1−periodic continuous function f(x) =
∑∞
−∞ c(k) exp(2πikx)

and every summable sequence r(k), k ∈ Z, of complex numbers we have:∫ 1

0

∣∣∣∣ ∞∑
−∞

r(k)c(k) exp(2πikx)

∣∣∣∣ dx ≤ ∞∑
−∞
|r(m)|

∫ 1

0

∣∣∣∣ ∞∑
−∞

c(k) exp(2πikx)

∣∣∣∣ dx.
This is obvious by the triangle inequality.

Let us prove the second statement in Theorem 8.6. The set E is not a Sidon set
since it contains arbitrarily long direct sums A + B where #A = #B = N . Therefore
there exists a continuous 1−periodic function g0(x) =

∑
m∈E cm exp(2πimx) such that

‖g0‖∞ = 1 and
∑
m∈E |cm| =∞. Let us write εm = rj,k if m = 3j + 2k, 0 ≤ k ≤ j. We

then consider
g(x) =

∑
m∈E

cm exp(2πi(m+ εm)x). (8.6)

We have |g(x) − g0(x)| ≤ 2π
∑
m∈E |cm||εm||x| ≤ C|x| and g is a continuous function.

This function g is mean periodic, its Fourier transform is a sum of Dirac masses on Λ
but g is not an almost periodic function since lim supx→∞|g(x)| = ∞ as Diophantine
approximations show. Therefore Q(Λ) does not hold.

Let us prove Q(Λ, 1). Let f(x) =
∑
m∈E am exp(2πi(m+εm)x) be an arbitrary trigono-

metric sum whose frequencies belong to Λ. We expand

exp(2πiεmx) =
∞∑
0

(2πiεmx)k

k!
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which leads to

f(x) =
∞∑
0

fk(x).

But Lemma 8.7 yields ∫ 1

0

|fk(x)| dx ≤ (2πβ)k

k!

∫ 1

0

|f0(x)| dx.

Therefore πβ < 1/4 implies∫ 1

0

|f(x)| dx ≥
(

1− 2πβ

1− 2πβ

)∫ 1

0

|f0(x)| dx.

Finally we use the classical fact that E is a Λ(2) set and obtain∫ 1

0

|f(x)| dx '
(∫ 1

0

|f0(x)|2 dx
)1/2

.

But this L2−norm is
(∑

m∈E |am|2
)1/2

. Everything being translation invariant we have

also
∫ q+1

q
|f(x)| dx '

(∑
m∈E |am|2

)1/2
. Finally (8.1) holds with p = 1 and K = [0, 1]

which ends the proof of Theorem 8.6.

9. Growth estimates

Let Λ ⊂ Rn be a closed and discrete set. Let us assume property T (Λ) (Definition 4.1).
Let CΛ denote the topological vector space consisting of all mean periodic functions
whose spectrum is simple and contained in Λ. If Kahane’s property Q(Λ) is not satisfied
there exists a function f ∈ CΛ which is not bounded. How large can f be at infinity?
To answer this issue let us return to the definition of mild sets which was already given
in Section 4, Definition 4.8.

Definition 9.1. A mild weight function ω(x), x ∈ Rn, satisfies the three following
properties

(a) ω is a continuous function and ω(x) ≥ 1
(b) ω(x+ y) ≤ ω(x)ω(y), x, y ∈ Rn
(c) There exist a constant C and an exponent m such that

ω(x) ≤ C(1 + |x|)m, x ∈ Rn.

We now investigate the behavior at infinity of mean periodic functions f ∈ CΛ.

Definition 9.2. A closed and discrete set Λ of real numbers is a mild set of frequencies
if there exist a mild weight function ω and a compact set K such that every f ∈ CΛ
satisfies

∀x ∈ R, |f(x)| ≤ ω(x) sup
y∈K
|f(y)|. (9.1)

When (9.1) is not satisfied there are two options:

(i) Either there exist a “large weight” ω and a compact set K for which (9.1) holds
(ii) Or (9.1) never holds whatever be the weight ω and the compact K.
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If the second option occurs we say that Λ is wild. An example is given now. Let θ > 2
be a real number. We define Λθ as the set of all finite sums

∑
k≥0 εkθ

k, εk ∈ {0, 1}.
Let us assume that θ is not a Pisot–Thue–Vijayaraghavan number. We consider the

sequence Pm(x) of finite products Pm(x) =
∏m−1

0 ( 1+exp(2πiθkx)
2 ). The spectrum of

Pm is contained in Λ. By Pisot’s theorem we know that |Pm(x)| =
∏m−1

0 |cos(πθkx)|
converge uniformly to 0 on every compact set not containing the origin. We have
Pm(0) = 1. Assuming by contradiction that (9.1) is true for some weight ω, we choose
x0 /∈ K and consider Rm(x) = Pm(x − x0). Then Rm converges uniformly to 0 on K
while Rm(x0) = 1. We have reached the required contradiction.

The following theorem gives a sufficient condition implying that a closed and discrete
set Λ is a mild set of frequencies.

Theorem 9.3. Let M ⊂ Rn be a uniformly discrete set and let σM =
∑
m∈M c(m)δm

be an atomic measure supported by M . Let us assume that the distributional Fourier
transform σ̂M of σM is a Radon measure. Let µ be the inverse Fourier transform of
σM and let us define w(x) by w(x) =

∫
|y−x|≤1

d|µ|(y). Let us assume that there exists

a mild weight ω(x) ≥ w(x). Let Λ = {m ∈M | c(m) = 1 }.
Then there exist a compact set K and a constant C such that every f ∈ CΛ satisfies

|f(x)| ≤ Cω(x) sup
y∈K
|f(y)|. (9.2)

For proving this theorem we define β > 0 by

inf{ |m−m′| |m 6= m′, m,m′ ∈M } = β > 0.

Let 0 < r < r′ < β/2, let Br (resp. B′r) the ball centered at 0 with radius r (resp. r’).

Let φ be a function in the Schwartz class S such that φ̂ = 1 on Br and φ̂ = 0 outside
B′r. Let µy be the Radon measure µ translated by −y and let χy(x) = exp(2πixy).

Then the Fourier transform of the product φµy is the convolution product φ̂ ∗ χyσM .
Let E = Λ +Br. The following lemma resumes this discussion:

Lemma 9.4. We have

φ̂µy(ξ) =
∑
λ∈Λ

exp(2πiλ · y) φ̂(ξ − λ) +R(ξ) (9.3)

where the function R vanishes on E.

Therefore φ̂µy(λ + s) = exp(2πiλ · y) if λ ∈ Λ, s ∈ Br. Let PW∞E denote the Pa-
ley–Wiener space consisting of all functions f ∈ L∞ whose Fourier transform is sup-
ported by E [7]. Then every f ∈ PW∞E can be written as f(x) =

∑
λ∈Λ exp(2πiλx)gλ(x)

where gλ ∈ PW∞Br .

Definition 9.5. For y ∈ Rn the twisted translation operator Ty : PW∞E → PW∞E is
defined by Ty[

∑
λ∈Λ exp(2πiλx)gλ(x)] =

∑
λ∈Λ exp(2πiλ(x+ y))gλ(x).

Then we have

Lemma 9.6. For f ∈ PW∞E we have Ty(f) = (φµy) ∗ f .
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Indeed Lemma 9.6 immediately follows from Lemma 9.4.

Lemma 9.7. There exists a constant C such that the total mass of the Radon measure
φµy does not exceed Cω(y).

This is immediately implied by the three properties of a mild weight. We conclude:

Lemma 9.8. The operator norm of Ty : PW∞E → PW∞E does not exceed Cω(y).

We are now ready to conclude the proof of Theorem 9.3. It suffices to apply Lemma 9.8
to a product f = Pg where P (x) =

∑
λ∈Λ cλ exp(2πiλx) is an arbitrary trigonometric

polynomial whose spectrum is contained in Λ and g is a fixed function in the Schwartz
class whose Fourier transform is supported by Br and such that g(0) = 1. Then
Ty(Pg) = P ( · + y)g( · ) and Lemma 9.8 yields ‖P ( · + y)g(·)‖∞ ≤ Cω(y)‖Pg‖∞. It
implies

|P (y)| ≤ Cω(y)‖Pg‖∞. (9.4)

Let us consider η(y) = |P (y)|
ω(y) and rewrite (9.4) as

η(y) ≤ C0 sup
|x|≤T

|P (x)|+ C sup
|x|≥T

|η(x)g(x)ω(x)|. (9.5)

We choose T large enough to ensure C|g(x)ω(x)| ≤ 1/2 when |x| ≥ T . This
is made possible since ω has a polynomial growth at infinity while g is rapidly de-
caying. Taking the supremum of the LHS of (9.5) with respect to y one obtains
‖η‖∞ ≤ C sup|x|≤T |P (x)|+ (1/2)‖η‖∞ which ends the proof.

Theorem 9.9. If Λ = Λα,β is defined by (4.7) every mean periodic function f ∈ CΛα,β
is O(

√
|x|) at infinity. Moreover this estimate is optimal.

To prove Theorem 9.9 it suffices to estimate w(x) =
∫ x+1

x
d|µ| when µ is the measure

defined by (6.5) in Proposition 6.2. We have

γ(p, q + αp) =

∫
T

exp
[
−2πi

(
pt+ (q + αp)θ(t)

)]
dt

where θ(t) = β sin t. If x ≤ q + αp < x+ 1 then q + αp = x+ s, 0 ≤ s < 1. It leads to

exp
[
−2πi

(
pt+ (q + αp)θ(t)

)]
=

∞∑
0

(−2πis θ(t))k

k !
exp
[
−2πi

(
pt+ xθ(t)

)]
.

Let us observe that given p and x there exists only one q such that x ≤ q+αp < x+ 1.
Finally ∫ x+1

x

d|µ| =
∑

x≤q+αp<x+1

|γ(p, q + αp)|

≤
∞∑
k=0

(2π)k

k !

∑
p∈Z

∣∣∣∣∫
T
θ(t)k exp

[
−2πi

(
pt+ xθ(t)

)]
dt

∣∣∣∣.
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Using the definition of the norm in the Wiener algebra A = A(T) we obtain∑
p∈Z

∣∣∣∣∫
T

exp(−2πipt) θ(t)k exp[−2πixθ(t)] dt

∣∣∣∣ ≤ ‖θk‖A ‖exp[2πixθ‖A.

But θ(t) = sin(2πt) implies

‖exp[2πixθ‖A ≤ C
√

1 + |x|
which ends the proof. We now prove the optimality. Let W a weight function and K a
compact interval such that every f ∈ CΛα,β satisfies

|f(x)| ≤W (x) sup
y∈K
|f(y)|. (9.6)

We want to prove that W (x) ≥ C
√
x. Let µ be the inverse Fourier transform of σΛ. Let

g be an arbitrary continuous function supported by [−1, 1] and normalized by ‖g‖∞ ≤ 1.
Then f = µ ∗ g belongs to CΛα,β . Therefore if L = K + [−1, 1] we have

|µ ∗ g(x)| ≤W (x)

∫
L

d|µ|. (9.7)

Taking the supremum over g yields∫ x+1

x−1

d|µ| ≤ CW (x) (9.8)

with C =
∫
L
d|µ|. But the LHS of (9.8) is larger than c

√
1 + |x|, c > 0, which ends the

proof.

The uniformly discrete set Λα defined in Theorem 7.7 is mild. To prove this remark it
suffices to observe that every f ∈ CΛα satisfies the convolution equation

f(x)− f(x− 1)− f(x− α) + f(x− 1− α) = 0. (9.9)

It implies that u(x) = f(x)−f(x−α) is 1−periodic. Therefore u is uniformly bounded.
We have |f(x)− f(x− α)| ≤ C which implies f(x) = O(|x|) at infinity.

This estimate is optimal if f ∈ CΛα . Let us begin with an easy observation.

Lemma 9.10. The estimate f(x) = O(|x|) at infinity is optimal for solutions of (9.9).

As we already observed every f ∈ CΛα is a solution of (9.9) but the converse is not true.
We now prove Lemma 9.10. There exist two sequences of integers mj , j ∈ N, and qj ∈ N
such that mjα − qj → 0, j → ∞. We then consider fj(x) =

exp(2πimjαx)−exp(2πiqjx)
mjα−qj .

Then we have |fj(x)| ≤ 2π|x| everywhere and |fj(x)| → 2π|x|, j → ∞ which proves
optimality in the general context of solutions to (9.9).

We now prove the optimality when f ∈ CΛα . Let ω be a weight function and K be
a compact set such that every f ∈ CΛα satisfies |f(x)| ≤ ω(x) supy∈K |f(y)|. Then for
every integer m ∈ N there exists a Radon measure µm supported by K and such that
‖µm‖ ≤ ω(m) and µ̂m(k) = 1, µ̂m(αk) = exp(2πikmα), k ∈ N. As we did in the proof
of Theorem 7.7 we decompose µm into a continuous part νm and an atomic part τm.
We have as above τ̂m(k) = 1, τ̂m(αk) = exp(2πikmα), k ∈ Z. Since τm is supported by

24



Yves Meyer: ESTIMATES ON TRIGONOMETRIC SUMS

K and satisfies ‖τm‖ ≤ ‖µm‖ it implies that the weight ω also governs the behavior at
infinity of all solutions f to (9.9). Therefore ω(x) ≥ |x| as announced.
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