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MEAN-PERIODIC FUNCTIONS AND IRREGULAR SAMPLING

YVES MEYER

ABSTRACT. The theory of irregular sampling raises many mathematical problems. A. Olevskii and A. Ulanovskii
proved that universal sampling sets exist. This remarkable discovery is given a new proof here. A problem raised
sixty years ago by Jean-Pierre Kahane on mean-periodic functions is paving the way to our surprising approach.

1. LOST OPPORTUNITIES

A few months ago I was preparing the 2018 Onsager lecture I had to deliver in Trondheim. I checked
the bibliography. Most of the time I forget to do it. I used Google and entered the key words of my talk.
Google pointed at a paper by Jean-Pierre Kahane entitled Sur les fonctions moyenne-périodiques bornées. It
was published in 1957 in Annales de 1’Institut Fourier [5].

To my great shame I had not read this paper until now. It is so surprising since Kahane was my colleague
at the mathematical department of Université Paris-Sud (Orsay) from 1967 to 1981 and we had many math-
ematical discussions. We also had some painful political disputes. The issue discussed by Kahane in his
remarkable 1957 paper is a particular instance of a broader problem: Can we infer the spectral properties of
a discrete point set A C R™ from its arithmetical structure?

More precisely Kahane proposed to investigate the structure of the discrete sets A C R™ which have
the following property: Every mean-periodic function whose spectrum is contained in A\ is necessarily an
almost-periodic function. This terminology will be defined in Sections 3 and 4.

In 1968, eleven years after the publication of Kahane’s paper, I attacked exactly the same problem. It
paved the way to the construction of model sets (model sets will be defined in Section 15). I described the
spectral properties of these model sets. 1 wrote a book [11] on these issues. It was published by North-Holland
in 1972. Today model sets are used to model quasi-crystals.

In 1974 Roger Penrose constructed his famous pavings. De Bruijn (March 20, 1980) elucidated the arith-
metical structure of the set V' of vertices of a particular Penrose paving. Using today’s terminology V' is a
model set. Therefore this set V' is a solution to the problem raised by Kahane.

Date: May 29, 2018.

Key words and phrases. irregular sampling, model sets, mean-periodic functions.

The author has been generously supported by the Norwegian University of Science and Technology. Aline Bonami provided a
remarkable criticism of a preliminary version of this essay. The author is the most grateful to the two referees who considerably
improved the manuscript.



DKNVS Skrifter 1, 2018

De Bruijn was unaware of Kahane’s problem. He was also unaware of my book where the theory of model
sets was detailed.

In 1985 the physicist Jean Lascoux (the same Lascoux who played such a seminal role in the wavelet saga)
asked whether my previous work in number theory was related to Penrose pavings. I did not recognize my
model sets and I said “no”. I was so dumb! Fortunately Robert Moody understood the connection between
De Bruijn’s interpretation of Penrose pavings and my previous work.

On April 8, 1982, Daniel Shechtman elaborated some chemical alloys presenting a five-fold symmetry
in their diffraction pattern. A mathematical theory explaining such patterns was elaborated by M. Duneau,
D. Gratias, and A. Katz. Duneau, Gratias, and Katz rediscovered my model sets.

In 2010 Basarab Matei and I proved that simple quasi-crystals are universal sampling sets (this termi-
nology will be explained later on). This gave a simpler solution to a problem raised and solved in 2006 by
A. Olevskii and A. Ulanovskii. Our solution looked quite original. Today I am ashamed. Let me explain why
I am so embarrassed.

Two months ago I dove into the book by A. Olevskii and A. Ulanovskii entitled Functions with Discon-
nected Spectrum [12]. Huge surprise: Using a result from this book I understood that my joint work with
Matei was not original. It is an obvious corollary of a theorem which was proved forty five years ago [10].
This unexpected approach to irregular sampling will be detailed in this contribution (Section 15). Kahane’s
problem is deeply rooted in this new proof as it will be proved below.

The achievements of Kahane, Penrose, De Bruijn, Moody, Shechtman, Olevskii, Ulanovskii, and my con-
tributions fit together like pieces of a jigsaw puzzle whose global structure was not immediately understood.
Pursuing distinct goals we were studying the same problem at the same time. Unfortunately we did not
collaborate. We were genuinely obeying our inner voices. These inner voices were communicating in a mys-
terious way. How is it possible? In his Nobel lecture, Joseph Brodsky addresses this issue. He explains how
artists obeying their inner voice are indeed collaborating without even noticing it:

Art is a recoilless weapon, and its development is determined not by the individuality of the
artist, but by the dynamics and the logic of the material itself, by the previous fate of the
means that each time demand (or suggest) a qualitatively new aesthetic solution.

Mathematicians are players of an orchestra directed by a “hidden conductor”. As Brodsky is suggesting
this “hidden conductor” is the dynamics of mathematics. This is true for the whole of Science. The pioneers
who launched the Institute for the Unity of Science in 1947 predicted that the hierarchy between distinct
scientific fields advocated by Auguste Comte would disappear in modern Science.

In his essay on the Institute for the Unity of Science [3], Peter Galison described the revolutionary goals
of the Institute:

This Comtian hierarchy is replaced by the orchestration of different instruments, each dis-
tinct but brought together to accomplish something bigger than any could do individually.

Jean Delsarte, Laurent Schwartz, Jean-Pierre Kahane, Roger Penrose, Nicolaas De Bruijn, Daniel Shecht-
man, Robert Moody, Alexander Olevskii, and Alexander Ulanovskii were playing a remarkable music I had
the chance to hear.

2. ORGANIZATION

(3) Almost-periodic functions (Harald Bohr)

(4) Mean-periodic functions (Jean Delsarte and Laurent Schwartz)
(5) Kahane’s problem: almost-periodic versus mean-periodic

(6) Pisot-Thue- Jijayaraghavan numbers

(7) Local structure of almost-periodic functions
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(8) Paley-Wiener spaces
(9) Generalized Shannon’s theorem
(10) Sparsity
(11) Stable sampling
(12) Stable interpolation
(13) Landau’s theorem
(14) Universal sampling sets
(15) Sampling on quasi-crystals (the new proof).
Sections 3 to 14 do not contain much original results. They are providing many definitions and some

heuristics which pave the way to the new proof of the main theorem. This proof is detailed in Section 15
which is self-contained.

3. ALMOST-PERIODIC FUNCTIONS

The function f(z) = cos(z) + cos(2x/3) of the real variable x is periodic with period 67 : f(x +
6m) = f(z). The set of periods of f is 67Z. Each interval of length 67 contains a period of f. These trivial
observations pave the way to the theory of almost-periodic functions. The function g(z) = cos(z)+cos(v/22)
is not a periodic function. It is our first example of an almost-periodic function. Let us compare g(x) to the
translated functions g(z + 2k7) = cos(z) + cos(v2(x + 2km)), k € Z. Diophantine approximation theory
implies the following fact: There exists a constant C' such that for every € > 0 each interval I of length C'/e
contains an integer k£ such that \\/§k1 —my| <e€ my € Z. Then

lg(x + 2km) — g(z)| < 2me.

The function g repeats itself with an arbitrarily small error after a period of time given by 2k;7. We have just
defined an almost-periodic function.

We now consider functions of n real variables. We follow Harald Bohr and define almost-periodic
functions in full generality. The sup norm of a continuous bounded function f is defined by || f| =

sup egn | f(2)].
Definition 3.1. Let f be continuous and bounded on R™. For 7 € R™ let f. be the translated function defined
by f-(z) = f(x — 7). Lete € (0,2). Then 7 € R™ is an € almost-period of f if

1fr = flloo < €l fllo (1)

A set of points A C R"™ is relatively dense if there exists a constant C' such that for every = € R™ the ball
B(z, C) centered at = with radius C' contains at least one y € A. This definition is due to Besicovitch. In
other words A is relatively dense if there exists a compact set X C R™ such that A + K = R"™.

Definition 3.2. A continuous function f on R™ is almost-periodic in the sense of Harald Bohr if it is bounded
and if for every € € (0,2) the set A, of € almost-periods T of [ is relatively dense.

An almost-periodic function is uniformly continuous. The space B of almost-periodic functions is a Ba-

nach space when it is equipped with the sup norm || f|oc-

Definition 3.3. A trigonometric polynomial is a finite sum
P(z) = Z c(w) exp(2miw - x)
weF

where the coefficients c(w) are arbitrary complex numbers.



DKNVS Skrifter 1, 2018

A trigonometric polynomial is an almost-periodic function. If f in an almost-periodic function there exists
a sequence P; of trigonometric polynomials such that: || f — Pj||cc — 0, j — oo.

Let f be an almost-periodic function. Let ¢,, be the inverse of the volume of the unit ball. Then the mean
value of f exists, is defined by M(f) = limp_ 0o ¢, R7" fB@R) f(z)dz and is attained uniformly in .
For each w € R" the product exp(—2miw - =) f(x) is also an almost-periodic function. This leads to the
following definition.

Definition 3.4. Let f be an amost-periodic function and w € R"™. We define the Fourier coefficients of f by
flw) = M(X,f) where x,,(z) = exp(2miw - ) and x,,(x) is the complex conjugate of x.,(z).

~ ~

The notation f(w) can be confusing since f(w) is not the “value” at w of the distributional Fourier trans-
form f of f. If f is almost-periodic, so is | f|?, and one has M(|f|*) = > g |f(w)[?. Therefore the set

S of frequencies w for which f(w) # 0 is at most a numerable set.

Definition 3.5. The spectrum o(f) of f is the set S = {w € R™; f(w) # 0}.

The distributional spectrum of a tempered distribution f is the closed support of its Fourier transform f
How is the distributional spectrum of an almost-periodic function f related to o (f)?

Lemma 3.1. If f is an almost-periodic function, its distributional spectrum is the closure of o(f).

An example is the almost-periodic function f(z) = > 0" 27* cos(2r27*z). Then o(f) = {£27%,k =
0,1,...} while the distributional spectrum of f is o(f) U {0}. Any numerable set E is the spectrum of an
almost-periodic function.

The following definition plays a key role in a problem raised by Jean-Pierre Kahane and studied in Section
S.

Definition 3.6. Ler A C R”™ be an arbitrary set. Then By denotes the vector space consisting of all almost-
periodic functions f whose spectrum o (f) is contained in A.

Here are some examples. If A = Z then B, is the vector space of all 1-periodic continuous functions.
Letaw ¢ Qand let A = Z U «Z. Then we have f € By if and only if f = u + v where u is a 1-periodic
continuous function and v is a 1/a—periodic continuous function. If A = {27% k = 0,1,...} then f € By
if and only if the Fourier expansion of f is absolutely convergent: f(z) = > cx exp(2mi2~*z) where

> < o00.

The subspace V5 C B, consists of all finite trigonometric sums ), - 4 ¢(A) exp(27i) - ) whose frequen-
cies belong to A. Then V), is dense in Bj.

Ck

4. MEAN-PERIODIC FUNCTIONS

The theory of mean-periodic functions was elaborated in the fifties by Jean Delsarte, Leon Ehrenpreis,
Bernard Malgrange, and Laurent Schwartz.

Let us begin with the simplest example. The Fibonacci sequence (z,,),cy defined by zg = 0, 7 =
1, Zpt1 = xpn + Tn—1, n € N, is a mean-periodic sequence. In general a mean-periodic sequence z =
(1 )nez of real or complex numbers is a solution of a recurrence relation Zé\r c(k)zn—1 = 0. This equation
can be written « * = 0 where p is a finite sum of weighted Dirac measures.

We now move from the discrete to the continuous world. The space B of almost-periodic functions is a
Banach space when the topology is defined by the sup norm on R™. What will happen in a billion of years is
as relevant as what is happening now. In the case of mean-periodic functions the present is more important
than the future. Therefore mean-periodic functions are antagonist to almost-periodic functions. That remark
stresses the relevance of Kahane’s problem (Section 5).
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Let C(R™) denote the topological vector space of all continuous functions on R™. No growth condition
at infinity is required. The vector space C(R™) is equipped with the topology 7 of uniform convergence on
compact sets. This topology is much weaker than the one used in the theory of almost-periodic functions.

Instead of developing a general theory of mean-periodic functions let us focus on a relevant example.
For the sake of simplicity this example is studied in one dimension. Let « ¢ @, « > 0, and consider the
functional equation

fle—a-1)=flz—a) = flz—-1)+ f(z) =0 (2)
where f is a continuous function of the real variable x. Let j1,, = d, — 89 Where 6, = 6(z — ) is the Dirac
measure at . Then p; = §; — dg and (2) can be rewritten as f * i, * 1 = 0. Obvious solutions of (2) are
continuous solutions of f * u, = 0 or of f % u; = 0. We find periodic functions of period « in the first case
and of period 1 in the second. A sum f = u + v between two such periodic continuous functions is still a
solution of (2). Are there other continuous solutions of (2)? This is the fundamental problem of the theory
of mean-periodic functions. If one imposes f € B the answer is no. The only almost-periodic solutions
of (2) are the trivial solutions f = u + v. But non trivial continuous solutions f ¢ B exist. Here is the
construction. By Hurwitz’s theorem there are infinitely many rational numbers p;/q;, p;,¢; € N, j > 1,

such that |é - z—j| < q;_?l\/g. We can assume g;+1 > 2¢;. We define a continuous function of the real variable
x by
0o
f(a) =" [exp(2migjz/a) — exp(2mip;=)] (3)

1
Since | exp(2mig;x /o) — exp(2mipjx)| < Clx|/q; and since the g; have an exponential growth the series
(3) converges uniformly on compact sets to a continuous function f(x) which satisfies (2).

Proposition 4.1. The function f defined by (3) does not belong to L>°.

Here is the proof. Let f,, = >.|"[exp(27ig;x/a) — exp(2mip;x)] be the partial sums of (3). If f € L>®
it will be shown below that || f,, ||cc < C. This is wrong: || fn]|cc = 2m.

Here are the details of this argument. Let ¢; be a test function whose Fourier transform is 1 on [—¢; —
1,¢; + 1] and vanishes outside [—¢;11 — 1, g;41 + 1]. Since gj+1 > 2¢; we can also impose ||¢; |1 < C. Let
us argue by contradiction and assume that f belongs to L>°. We then have || f * ¢/~ < C.

Lemmad4.1. fx¢; = f;.

If Lemma 4.1 is granted, Proposition 4.1 is immediate. Indeed f € L implies || fj|lc < C. But
| filloc = 27 as Diophantine approximations show.

We return to the proof of Lemma 4.1. We have |f,,,| < C|z| and f,,, tends to f in a weighted L°° space.
More precisely the L>° norm of % tends to 0 as m tends to co. It implies f*¢; = lim,, 00 frn ¥ @
for every j and the convergence holds in the same weighted L space. But by the definition of ¢; we have

fm * ¢; = f; if m > j which ends the proof of Lemma 4.1.

A continuous solution of (2) is a mean-periodic function. The general theory can now be developed. Two
options exist. One can define a mean periodic function as a continuous solution of a convolution equation
f * p = 0 where p is a compactly supported complex Radon measure. Such an equation generalizes (2). A
second option is to start with a spectrum A. In our previous example A = Z U a~'Z. Then any continuous
solution f of (2) is the limit with respect to the topology of uniform convergence on compact sets of a
sequence P; of trigonometric polynomials whose frequencies belong to Z U a 7.

To define mean-periodic functions in full generality we replace Z U a~'Z by an arbitrary closed and
discrete set A. A set of points A C R™ is discrete if each A € A is isolated in A. As above V, is the vector
space of all finite trigonometric sums ), ¢(A) exp(2mi) - ) whose frequencies A belong to A.
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Definition 4.1. With these notations Cn denotes the closure of the space V5 with respect to the topology T
of uniform convergence on compact sets.

The space B is defined by Definition 3.6. We obviously have By C Ca. Two possibilities can occur.
Either Cy = C(R™) or Cp # C(R™). In the first case the space C, is uninteresting. In the second case the
Hahn Banach theorem implies the following: there exists a non trivial compactly supported complex Radon
measure ¢ such that every f € Cy satisfies % f = 0. Then f is called a mean-periodic function (Definition
4.2 below) and we then say that the spectrum of f is contained in A.

Definition 4.2. A function f € C(R™) is mean-periodic if there exists a compactly supported complex Radon
measure i, p 7 0, such that f * p = 0.

This definition was proposed by Jean Delsarte. Such a convolution equation generalizes the recurrence
relation satisfied by the Fibonacci sequence.

If A is uniformly discrete we have Cy # C(IR™). Let us prove this observation.

Definition 4.3. A set of points A C R"™ is uniformly discrete if there exists a 3 > 0 such that [ \—X'| > 3 >0
when X # X, A\, N € A.

Proposition 4.2. Let A C R"™ be a uniformly discrete set. There exists a function gx with the following
properties (a) gn # 0, (b) ga is supported by a compact set B C R", (c) gp € L?(B), and (d) the Fourier
transform of g vanishes on A.

Indeed for a ¢ A, the set A U {a} is a set of stable interpolation for PW 2 whenever B is a ball and the
diameter of B is large enough. This is a standard result on stable interpolation [5]. Stable interpolation will
be studied below. Therefore there exists a function gy € L2(B), supported by B, such that gy = 0 on A and
ga(a) = 1. Finally every f € Cy satisfies f * gn = 0. Therefore every f € Cp is a mean-periodic function.

Here is an example of an almost-periodic function which are is mean-periodic. Let g(z) = >, 27" sin(272~*x).
Then g is obviously an almost-periodic function but is not a mean-periodic function. If j is a compactly sup-
ported complex Radon measure ;1 * ¢ = O implies ¢ = 0. Let us end this section with an example of
a function f which is given by a Fourier series expansion but is neither a mean-periodic function nor an
almost-periodic function. It is given by the following expansion f(z) = > sin(272~*z). This series is
uniformly convergent on compact sets. But f is not almost-periodic since it is not uniformly bounded. We
have | f(x)| < C|log(|x|), |#| > 1. Finally f is not mean-periodic.

5. KAHANE’S PROBLEM

In his 1957 paper Jean-Pierre Kahane raised a fundamental issue. He proposed the following problem:
when do we have By = Cx? This leads to the following definition:

Definition 5.1. A closed and discrete set A C R™ satisfies the property Q(A) if Cn = Ba.
A discrete set A for which property Q(A) holds is called a coherent set of frequencies in [11].
Lemma 5.1. Kahane’s property Q(A) implies that A is uniformly discrete.

The converse implication is wrong as it will be seen below. An equivalent definition was given by Kahane
in [5]:

Lemma 5.2. Q(A) is equivalent to the following condition: there exists a compact set K and a constant C
such that for every finite trigonometric sum

f(z) = Z c(N) exp(2mi\ - x)

AEA

10
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whose frequencies belong to A\ one has

[flloe < C sup [f(x)]. (4)
zeK

We write Q(K, A) for the latter property. This implies that a function in C can be uniquely retrieved from
its restriction to K with control on L norms. The next issue is, when possible, to replace K by a smaller
compact set K/ C K for which Q(K”’, A) still holds. This problem will be given a surprising solution in
Theorem 15.4.

The following observations will not be needed in the proof which will be given in Section 15. They explain
why Kahane’s problem is related to irregular sampling.

Remark 5.1. Kahane’s problem can be rephrased as a problem of stable interpolation (Section 12). Stable
interpolation arises in the mathematical theory of irregular sampling.

In his pioneering work Kahane extended property Q(A) to other functional norms. Let us define Stepanov
almost-periodic functions. Let 1 < p < oo and let Lf’o . be the vector space consisting of all measurable
functions f such that || f||z,, = ([ [fI? dz)'/? is finite for every compact ball B. The topology of LI is
defined by these semi-norms || - || g - Let p € [1,00] and f € LT . The Stepanov norm of f is defined by

loc®

17l = sup ( / F@)P dy) VP
R Jly—2[<1

TER™
when the right hand side is finite.

Definition 5.2. With these notations f belongs to the Stepanov space SP if and only if f is the limit with
respect to the Stepanov norm || - ||s» of a sequence of trigonometric polynomials.

For instance the Heaviside function does not belong to SP. The space S°° coincides with the Banach
space B of almost-periodic functions in the sense of H. Bohr. Let A C R™ be uniformly discrete. On the
one hand let us consider the closure C} of trigonometric polynomials f(z) = 3, ¢(A) exp(2mi) - ) with
respect to the topology of Lf . On the other hand let us consider the closure S} of trigonometric polynomials
J(x) = 2 2xea ¢(A) exp(27mi) - x) with respect to the Stepanov norm. Kahane asked in [5] whether or not one
has C§ = S%. If it is the case we say that Q(A, p) holds. An equivalent definition is given by the following

proposition:

Proposition 5.1. Ler us assume 1 < p < co. Then property Q(A, p) holds if and only if there exist a compact
set K and a constant C' such that for every trigonometric polynomial P(x) = Y\, c(\) exp(2miz - X) with
frequencies in A we have

su 2)|P dz)2/P 2)|P da) /P,
p</K+yIP< )P d) s0</K|P< )P dz) (5)

yER™

If p = 2 everything looks simpler and (5) is equivalent to

(P2 < o [ 1P o) (sbis)
AEA K

If A is uniformly discrete (5bis) holds if K is a sufficiently large ball [5]. If (Sbis) holds for a compact set K
it will hold for any L containing K. Given A we would like to know how small K can be. Landau’s theorem
(Section 13) implies that the Lebesgue measure of K cannot be smaller than the lower density of A. It will
be proved in Section 15 that this necessary condition is sufficient (up to an arbitrarily small €).

We return to p = oo. Property Q(A) depends on the arithmetical structure of the set A as Theorems 5.1
and 6.1 are showing.
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Theorem 5.1. Let o > 0 be a real number. Then
Ao =-NUaN={...,-4, -3, -2, -1,0, o, 200, 3cv, dov,---}
satisfies Kahane’s Q(A) property if and only if o« € Q.
This theorem is not needed in this contribution and will be proved in a forthcoming paper. Another
example is studied in the next section.
6. PISOT-THUE-VIJAYARAGHAVAN NUMBERS

Definition 6.1. A Pisot—Thue—Vijayaraghavan number is an algebraic integer 0 > 1 of degree n whose n — 1
conjugates 0, . . ., 0, satisfy |0;] < 1.

Natural integers 6 € N, § > 2, are Pisot-Thue—Vijayaraghavan numbers. Beyond natural integers the best
l(ilown example is the golden ratio ¢ = 1+T\/5 We have ¢? — ¢ — 1 = 0. Its conjugate is ¢ = 1*2—‘/5
6] < 1.

Definition 6.2. Let 0 > 1 be a real number. We define Ay as the set of all finite sums
> k>0 exf®, e €{0,1}.

Let us return to Kahane’s problem.

and

Theorem 6.1. Let 6 > 1 be a real number. Then Ay satisfies Kahane’s property Q(A) if and only if 0 is a
Pisot—Thue— -Vijayaraghavan number.

Therefore Axel Thue’s work is closely related to Kahane’s problem.

Here is the proof of Theorem 6.1. One way is almost trivial. Let us assume that 6 is not a Pisot num-

ber and prove that QQ(Ag) does not hold. We consider the sequence P,,(z) of finite products Py, (x) =
'S gk - ) —_ - .

ot (e r) ) By Pisot’s theorem we know that | P, ()] = [[5"~ " | cos(w6* )| converge uniformly

to 0 on every compact set not containing the origin. We have P,,(0) = 1. Assuming by contradiction that

Q(K, Ay) is true, we choose xg ¢ K and consider R, (x) = Pp,(z — xo). Then R,,, converges uniformly to

0 on K while R,,(z() = 1. We have reached the required contradiction.

Let us sketch the proof of the converse implication. If € is a Pisot number, then Ay is contained in a model
set [11] and every model set A satisfies Kahane’s property Q(A). We will return to this point in Section 15.

We have more.

Theorem 6.2. Let 0 > 2 be a Pisot—Thue— Vijayaraghavan number. Then for every compact set K with a non
empty interior there exists a constant C such that for every finite trigonometric sum f(x) = aea C(A) exp(2miA-
x) one has

[fllec < C'sup [f(z)]. (6)
zeK

This is proved in [10]. Here are two more examples. Proofs will appear elsewhere.
Theorem 6.3. Let o and 3 # 0 be two real numbers. Then the set of real numbers
A ={k+ Bsin(2rak), k € Z}
satisfies Kahane’s property Q(A) if and only if o € Q.

Let o > 1 be irrational. Then the union A = Z U oZ does not satisfy ()(A) since it is not a uniformly
discrete set (Lemma 5.1). For a positive 3 let A, g) C A be defined by deleting from A all integers k € A
whose distance to aZ is less than /3 and similarly deleting from aZ all ok € aZ whose distance to Z is less
than .

12
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Theorem 6.4. A, g) satisfies Kahane’s property Q(A) but is not a model set.

The definition of a model set is given in Section 15.

7. LOCAL STRUCTURE OF ALMOST-PERIODIC FUNCTIONS

Let A C R™ be a closed and discrete set. Let 55 be the corresponding space of almost-periodic functions.
Then B, is the closure with respect to topology of uniform convergence on R™ of the vector space of all finite
trigonometric sums whose frequencies belong to A.

The local structure of By is studied by restricting f € By to a compact set K. If K is “small” one cannot
expect that f € BB can be retrieved from its restriction to K. We denote by R(K, A) the extreme degeneracy:
Every continuous function on K is the restriction to K of a function f € By. If it is the case the restriction
to K of a function f € B, does not provide any information on f.

Definition 7.1. We say that property R(K, A) holds if every continuous function g on K is the restriction to
K of an almost-periodic function belonging to By .

It then seems that Kahane’s property Q (K, A) is very distant from the degeneracy property R(K, A). The
following result provides us with an example where Q(K, A) and R(K, A) are almost contiguous. Let |K|
denote the Lebesgue measure of a compact set K.

Theorem 7.1. Let A C R"™ be a simple quasi-crystal and let 3 = dens A. Then

(a) R(K,A) holds for every compact set K such that | K| < 3.
(b) Kahane’s property Q(K, A) holds if K is Riemann integrable and |K| > .

Simple quasi-crystals are defined in Section 15. Theorem 7.1 will follow from Lemma 15.3 and Theorem
15.4.

Remark 7.1. Property R(K, \) can be rephrased as a statement about stable sampling.

This will be proved below (Lemma 11.2). The same problem can be raised for other functional norms.
The following definition is seminal in the theory of irregular sampling.

Definition 7.2. Let K C R" be a compact set with positive Lebesgue measure. Then a uniformly discrete
set A is a set of stable sampling for PWIQ{ if every function f € L%(K) is the restriction to K of a Stepanov
almost-periodic function f € S3.

The Paley-Wiener space PW 2 will be defined in the next section and stable sampling will be studied in
Section 11.
8. PALEY-WIENER SPACE

Definition 8.1. Let K C R" be a compact set. We write f € PWZ if f € L*(R") and if its Fourier
transform f vanishes almost everywhere outside K.

Ifn=1and K = [~w,w] then f € PW2 is a band limited signal and its cutoff frequency is w.
Definition 8.1 can be generalized to L? spaces.

Definition 8.2. Ifp € [1, 00| we write f € PWY. if f € LP(R™) and if the distributional Fourier transform
f of f vanishes outside K.
In satellite imaging K depends on the optics of the instrument. All images f € PW3Z are sampled on

a given lattice I'. A lattice I" is a discrete subgroup such that the quotient R™/I" is compact. Equivalently
I' = A(Z") where A € GL,(R). Sampling an image f € PW2 on I yields the sequence f(7), v € T,
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belonging to I2(T"). One needs to retrieve f from its samples. This is solved by the generalized Shannon-
Nyquist theorem (Theorem 9.1). The choice of this lattice I' is seminal in the economical success of the
satellite. Coarse lattices are prohibited by the generalized Nyquist-Shannon theorem. Fine lattices are too
expensive. The optimal lattice depends on the geometry of K. The definition of the constant cp which is
given below will be used in Section 9 and 15.

Definition 8.3. IfT' = A(Z") is a lattice we set cr = |det A|7L.
9. GENERALIZED SHANNON’S THEOREM

The generalized Shannon-Nyquist’s theorem governs the design of an optimal lattice in satellite imaging.
Given a compact set K C R? our goal is to sample images f € PW2 on a lattice I in the most efficient way.
The dual lattice of a lattice I' C R™ is defined by I'* = {y; exp(27wiy - ) = 1, Va € I'}. The generalized
Shannon-Nyquist’s theorem is true in any dimension.

Theorem 9.1. The three following properties are equivalent
(a) The mapping S : PWZ +— 12(1) defined by S(f) = (f(7))~er is injective
(b) Forevery f € PWI% one has || f||2 = CEI(Z%F |f(7)? )1/2
(c) Forevery v* € I'* one has

Y #0= (K +7)NK|=0. (7)
Here | E/| denotes the Lebesgue measure of the Borel set E.

Y. Katznelson in [6] (Chapter IV, Interpolation of linear operators, page 113) constructed a compact set K
such that the implication (b) = (c) in Theorem 9.1 fails when PW} is replaced by PW¥ with 1 < p < 2.
More precisely Katznelson proved the following:

Theorem 9.2. There exists a compact set K C R of positive Lebesgue measure such that PWE. = {0} for
1<p<2.

Theorem 9.2 is true in any dimension. Let K C R"™ be the compact set constructed by Katznelson. Then
the stable recovery property becomes trivial. But this does not imply necessarily (7). This pathology does
not occur if K is Riemann integrable.

In satellite imaging one is given K and the issue is to find the sparsest I' for which (7) holds. This
corresponds to finding I'* as dense as possible. This has been achieved by Bernard Rougé who elaborated the
SPOT 5 satellite. Satellite SPOT 5 was launched on April 2002 by an Ariane rocket. It was built by the CNES
Agency. During fifteen years SPOT 5 provided Earth images with a resolution of 2.5 meters. SPOT 5 relied
on a new sampling concept named “Supermode”. The sampling grid I" used in SPOT 5 was the sparsest one
to be consistent with the optics K of the satellite.

10. SPARSITY

A “regular grid” is a lattice. For a long time sampling a band limited signal on a regular grid was considered
as a good fortune while an “irregular grid” was viewed as a wrong choice. To our greatest surprise the opposite
is true. Sampling a band limited signal on a simple quasi-crystal circumvents the strong limitations imposed
by Shannon-Nyquist’s theorem.

This line of research is an illustration of the new paradigm of compressed sensing of sparse signals de-
veloped by Emmanuel Candeés and David Donoho [2]. Compressed sensing is the following program. A
collection C of signals or images have a sparse representation in a given orthonormal basis B if expansion of
every f € C in B only activates “a few vectors” depending on f. The compressed sensing program amounts
to finding a universal sparse collection G of vectors such that every f € C can be retrieved from the few
samples < f, g >, g € G. This sparse collection cannot be contained in B.

14
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Definition 10.1. Let f be a 1-D signal or a 2-D image and let Ky be the closure of the support of the Fourier
transform f of f. We say that f is sparse in the Fourier domain if the Lebesgue measure |K ¢| of Ky is small.
Let 8 be a positive real number. One writes f € SF(S) if |[K¢| < B.

Definition 10.1 is consistent with Landau’s theorem (Theorem 13.1). Landau’s theorem relates the “sam-
pling rate” to the Lebesgue measure of the spectrum. Let us observe that f € SF(3) and g € SF(3) imply
f+ g € SF(2p) since the measure of the union between K ; and K, does not exceed 2/3.

The paradigm of compressed sensing implies the following.

Claim 10.1. For every positive (3 there exists a coarse grid Ag such that (a) the density of Ag tends to 0 with
B and (b) every sparse signal f € SF(B) can be retrieved from its samples on Ag.

Lattices do not work. Here is an example. Let us assume that n = 2, let R > ¢ > 0 and let K () be the
annulus defined by R — ¢ < || < R. Then |K(€)| ~ 2w Re as ¢ — 0. If the functions f € PW12<(6) are

sampled on a lattice A the coarsest choice is the hexagonal lattice whose density is 2v/3R2. The density of
this lattice does not tend to 0 as ¢ — 0. Sampling on a quasi-crystal solves this problem. Indeed Theorem
15.1 will tell us that the optimal sampling rate only depends on the Lebesgue measure of the spectrum. More
precisely for every 3 > | K (¢)| there exists a quasi-crystal A with density 5 which is a set of stable sampling
for PW}2<(€>. This relation between the “sampling rate” 3 of A and the Lebesgue measure |K ()| of the
spectrum is optimal as Landau’s theorem (Theorem 13.1) will show.

11. STABLE SAMPLING ON ARBITRARY SETS
Band-limited signals will now be sampled on uniformly discrete sets.
Definition 11.1. Let K C R”™ be a compact set and let A C R"™ be a uniformly discrete set. Then the
sampling operator S : PWZ — 12(A) is defined by S(f) = (f(\))ea-
The sampling operator S is continuous.

Definition 11.2. A is a set of stable sampling for PW 2 if the operator S : PW2 s [2(A) has a bounded
left inverse: there exists a continuous operator T : I>(A) — PW2 such that TS = I.

In other words A is a set of stable sampling for PW 2 if there exists a constant C' such that for every
f € PWE the following holds
I£ll2 < O 1AM (8)
AEA
Lemma 11.1. Let A C R"™ be a uniformly discrete set and K C R™ be a compact set. Then the following
two properties are equivalent

(a) Ais a set of stable sampling for PW %
(b) Every function f € L*(K) is the restriction to K of a function F belonging to the Stepanov space

S3.
Using property (b) f canbe writtenas f(z) = 3", ., ¢(A) exp(2miA-z) and one has (3", ¢, [c(A)[})/2 <
C([x | f(2)[? dx)'/? for a constant C. This property was already introduced in Definition 7.2.
Stable sampling will now be addressed when 2 is replaced by p € [1,00]. The space PW?. is defined

by Definition 8.2. Let p € [1,00] and let A C R™ be a uniformly discrete set. Then the sampling operator
S : PWE s [P(A) is continuous.

Definition 11.3. A is a set of stable sampling for PWZ. if there exists a constant C' such that for every
| € PWE the following holds

11l < COQ_ 1FNIMYP.

AEA
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We then say that property S(p, K, A) holds.

Property R(K,A) was defined in Section 7. It can be rephrased as a statement about stable sampling
where the space L? is replaced by be the Banach algebra B = B(R™) of Fourier-Stieltjes transforms i of
bounded complex Radon measures . Then 1 is uniformly continuous and can be restricted to A. Let B(A)
be the corresponding restriction algebra equipped with the quotient norm (see [13]). Elements of B(A) are
sequences c(\), A € A, of the form ¢(\) = fi(\), A € A, where 4 is a bounded complex Radon measure.

Definition 11.4. Let f € B and let fbe its distributional Fourier transform. We write f € PWE if the
Radon measure f is supported by K.

Here the sampling operator S : PWE — B(A) is a contraction by the definition of the norm in B(A).

Definition 11.5. With these notations A is a set of stable sampling for PW E if there exists a constant C such
that for every f € PWE we have

Iflls < Cllfllzeay-
Lemma 11.2. Then R(K, A) is equivalent to the following condition: A is a set of stable sampling for PW}?.

The proof can be found in [11], Chapter “Special Series”, Lemma 10.

12. STABLE INTERPOLATION

Definition 12.1. Ler 1 < p < oo. A uniformly discrete set A is a set of stable interpolation for PWZ. if
for every c(AN)xea € IP there exists a function f € PWE such that f(X) = c¢(\), A € A. We then say that
T(p, K, A) holds.

In Section 15 the case p = oo will play a seminal role. That is why the notation T'(co, K, A) will be
simplified into T'(K, A).

If K = [~w,w], the grid hZ is a set of stable sampling for PW2 if and only if 0 < h < 1/(2w). It s the
Shannon-Nyquist theorem. This grid is a set of stable interpolation for PW2 if and only if A > 1/(2w). This
extends to 1 < p < co. If p = 1 or p = oo stable interpolation requires h > 1/(2w).

As announced in Remark 5.1, Kahane’s property Q(K, A) will be rephrased as a problem of stable inter-
polation where the space L? is replaced by the Banach algebra B(IR™) which was defined in Section 11. Let
us define stable interpolation in this new setting.

Definition 12.2. Let K C R"™ be a compact set and B the Banach algebra of Fourier-Stieltjes transforms
of bounded complex Radon measures. A uniformly discrete set A is a set of stable interpolation for PWE if
every sequence belonging to the restriction algebra B(A) is the restriction to A of a function belonging to
PWE.

Lemma 12.1. Kahane's property Q(K, ) is equivalent to the following condition: A is a set of stable
interpolation for PW}?.

This is proved (with a different terminology) in [5], Proposition 3, page 298.

13. LANDAU’S THEOREM

The following necessary conditions for sampling and interpolation were discovered in 1967 by H. J. Landau
[7]. These conditions relate the uniform lower (resp. upper) density of a sampling set A C R™ to the Lebesgue
measure of the spectrum.

16
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Definition 13.1. The uniform lower density of a closed and discrete set A C R™ is denoted by dens A and
is defined as follows. The Lebesgue measure of the ball B(x, R) centered at x with radius R is |B(z, R)| =
cnR™. Then one first computes N (R) = inf,cpn #[B(x, R) N A]. Finally

N(R)

"

dens A = lim inf
R—oo Cp

The uniform upper density is denoted by dens A and is defined similarly: N(R) is replaced by M (R) =
SUp,ern #[B(z, R) N A]. Then

- M
dens A = limsup (R)
R—o0 CW,R"

Finally A has a uniform density if dens A = dens A. This common value is the density of A.

Let | E| denote the Lebesgue measure of a Borel set E C R™ and let A C R” be a uniformly discrete set.
Theorem 13.1. If A is a set of stable sampling for PW 2 we necessarily have
dens A > |K].
A similar theorem applies to stable interpolation.
Theorem 13.2. If A is a set of stable interpolation for PW % we necessarily have
dens A < |K].

Landau’s theorem does not hold if PW# is replaced by PW¥% and p € [1,2) as Katznelson’s theorem
shows. However Landau’s theorem is true for every p € [1, oc] if K is Riemann integrable.

The converse implication:

dens A > |K| = stable sampling (9)
does not hold in general. For instance (8) is wrong if A is a lattice. If A is a lattice the Shannon-Nyquist
theorem (Theorem 9.1) imposes a constraint which is much stronger than dens A > |K/|. Surprisingly (8)
holds if (7) A is a simple quasi-crystal (Definition 15.2) and if (i) dens A > |K]| is replaced by dens A >
|K|. This will be proved in Section 15, Theorem 15.1. We had to wait for fifty years to fully understand
Landau’s theorem. This was first achieved by Olevskii and Ulanovskii in [12] and then by Matei and the
author in [8].

14. UNIVERSAL SAMPLING SETS
Definition 14.1. A universal sampling set for L* is a uniformly discrete set A C R™ enjoying the following
properties
(a) A has a uniform density which is strictly positive. This density is denoted by dens A.

(b) A is a set of stable sampling for PW}% whenever the Lebesgue measure of the compact set K is
strictly less than dens A.

This definition can be extended to other function spaces. The Paley-Wiener space PWF. is defined in
Definition 8.2.

Definition 14.2. Let p € [1, 00|. We say that A is a universal sampling set for LP if

(a) A has a uniform density which is strictly positive.
(b) A is a set of stable sampling for PW?. whenever the Lebesgue measure of the compact set K is
strictly less than dens A.

A. Olevskii and A. Ulanovskii proved the following theorem in [12] (Theorem 3.32, page 32):

Theorem 14.1. The property: “A is a universal sampling set for LP” does not depend on p € [1, 0.
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From now on one writes “A is a universal sampling set” instead of “A is a universal sampling set for L”.”

In “A universal sampling of band-limited signals”, C.R. Math. Acad. Sci. Paris, 342 (2006) 927-931,
A. Olevskii and A. Ulanovskii proved the existence of universal sampling sets. It suffices to prove this exis-
tence theorem for dens A = 1. The general case follows by a simple rescaling.

A subset of a lattice cannot be a universal sampling set. This implies that universal sampling sets have an
intriguing arithmetical structure as indicated by the following observation.

Remark 14.1. Let A be a universal sampling set. For every ¢ > 0 there exists a uniformly discrete set A’
which is obtained by moving each point of A by less than ¢ and which is not a universal sampling set.

It suffices to replace each A € A by \' € € Z" such that |\ — \| < 464 Here is a stability result:

Lemma 14.1. If A = {)\;, j € J} is a universal sampling set then every perturbed set ' = {\;+r;, j € J}
such that |r;| — 0 as j — oo is still a universal sampling set.

It will be proved in a forthcoming paper. It implies that the elements of a universal sampling set can be
linearly independent over Q. Let & > 0 be an irrational real number. Then the set A, gy of Theorem 6.4
is not a universal sampling set. The proof of this fact will appear in a forthcoming paper. Richard Bass and
Karlheinz Grochenig [1] proved the following:

Theorem 14.2. Let r;, j € Z, be i.i.d. random variables equidistributed on [0,1]. Then almost surely the
random set

A={j+r;;jel}
is not a universal sampling set.

The density of A is 1. Bass and Grochenig proved a more precise result:

Lemma 14.2. Let o > 0 and K = [—«a, o] U [1 — «, 1 + «]. Then for almost all A there exists a sequence
Jr € PW such that || fy|l2 = 1and 37, » [f(N)]? =0, k — oo.

This random sequence 7; will now be replaced by a sequence s; € [0, 1] which is also equidistributed on
[0,1] but in a more even way than a random sequence. Then the resulting A = {j + s;; j € Z} canbe a
universal sampling set as the following example shows. Let {2} be the fractional part of the real number z
defined by {z} € [0,1) and z — {z} € Z.

Proposition 14.1. Let us consider the increasing sequence of real numbers defined by\; = j+{j V2}); i€z,
and A = {)\;, j € Z}. Then A is a universal sampling set.

This A resembles Bass-Grochenig’s random set. But s; = {j \/5} is more evenly equidistributed than the
random sequence r; used in Bass-Grochenig’s theorem.

Let §(x) be the distance from z to the nearest integer k& € Z. Consider
M ={j+0(jV2); j € Z}.
Is M a universal sampling set? M is the union between two disjoint model sets.
Our second example of a universal sampling set depends on a parameter o > 0.

Proposition 14.2.
Ao = {m+nV2; jm —nV2| <, myn €7}

is a universal sampling set.

The density of A, is a/v/2.
A two dimensional example of a universal sampling set is described in the following proposition:

18
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Proposition 14.3.

A, = {(k+ o{kV2 + IV3},1 + B{kV2 + IV/3}); k,l € Z}
is a universal sampling set when « and [3 are two positive real numbers such that (a) o/ 3 is irrational and
(b) the three numbers o, 8,1 + av/2 + 8v/3 are linearly independent over Q.

The density of A, is 1.

These examples A, A, and A, are three instances of simple quasi-crystals. Their properties will result of
Theorem 15.1 which is proved in the next section.

15. SAMPLING ON QUASI-CRYSTALS

Simple quasi-crystals are defined now. Let m,n € N, N = m +n, and I' C RY be alattice: I' = A(ZY)
where A € Gln(R). For (z,t) € RN = R™ x R™, we write py(z,t) = x, pa(z,t) = t. Let us assume that
p1 once restricted to I is a 1-1 mapping with a dense range. The same is required on ps.

Definition 15.1. Let I C R™ be a compact set (a window). Then the model set A; C R™ is defined by
Ar={p(v)iv e, pa(y) € I}

A beautiful example of a 1-dimensional model set is given by the set S(K) C R of all Pisot and Salem
numbers of degree n belonging to an algebraic number field K of degree n over Q. More precisely let O be
the ring of all algebraic integers of /C and let us denote by p1, ..., p, the n embeddings of K into R or C. Let
us assume that p; is real. We then define a one dimensional model set A C R by

A={p(w);we0, pjw) <1,2<j<n}
This is exactly the definition of S(K).

With this example in mind Pierre Deligne said that my model sets are obvious concepts for any mathe-
matician who is fond of number theory. I agree. This example paves the way to the proof of Theorem 6.1.
If 0 is a Pisot number let us denote by ;, 2 < j < n, the n — 1 conjugates of 6. If \ € Ag we have
A=3s0 ex0®, €ex € {0,1}. Then X is an algebraic integer of the field IC of degree n generated by 6.

1

Moreover the conjugates A;, 2 < j < n, of A (excluding X itself) satisfy ;| < 1=g- Therefore Ay is
J

T
contained in a model set.

‘We now return to more general model sets.

Lemma 15.1. Let I C R™ be a compact set. The upper density of the model set A is less than or equal to
cr|I|. If I is Riemann integrable the density of A1 equals cr|I|.

The constant cr is defined by Definition 8.3. Lemma 15.1 is proved in [9], page 31.
Definition 15.2. A model set Aj is a simple quasi-crystal if m = 1 and if I is a compact interval.

The following theorem was proved in [8] and our goal is to provide the reader with a much simpler proof.
Theorem 15.1. Let A C R™ be a simple quasi-crystal. Then A is a universal sampling set.

In other words A is a stable sampling set for PW2 whenever the compact set K C R" satisfies | K| <
dens A. Then, by Theorem 14.1, A is a stable sampling set for PWZ%., 1 < p < oo, whenever the compact
set K C R” satisfies |[K| < densA. If K C R" is a compact set such that || > dens A, then Landau’s
theorem implies that A is not a stable sampling set for PW2. The case | K| = dens A is studied in [4].

Three definitions will be used in our new proof of Theorem 15.1. As in Section 11 we write f €
PWE. 1 <p < oo, if f € LP(R™) and if its Fourier transform f is supported by K. Then A is a sta-
ble sampling set for PW?, if there is a constant C such that f € PW7, implies
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11l < COQ_ LFNIMYP. (10)

AEA
Property (10) will be labeled S(p, K, A). The case p = oo will be used in the proof of Theorem 15.1.

The fundamental property R(K, A) was introduced in Definition 7.1. Property R(K, A) is the following
statement: Every continuous function g on K is the restriction to K of an almost-periodic function f whose
spectrum o( f) is contained in A.

A third definition will be used in this context.
Definition 15.3. Let I C R™ be a compact set and M C R™ be a uniformly discrete set. Property T'(I, M)

is the following statement: Every sequence in [°°(M) is the restriction to M of a function F € L*°(R™)
whose Fourier transform F' is supported by I.

Then T'(I, M) coincides with the property T'(co, I, M) of stable interpolation (Section 12). Arne Beurling
discovered a simple necessary and sufficient condition ensuring 7'(1, M) when m = 1 and when [ is an
interval (Theorem 15.3).

With these notations Theorem 15.1 follows from Lemma 15.2 and Lemma 15.3.

Lemma 15.2. Let A be a uniformly discrete set and let us assume that three compact sets K, K', L satisfy
the following conditions:

(a) K is contained in the interior of K'
(b) K’ is contained in the interior of L.

We then have
R(L,A) = S(co, K',A) = S(2,K, \) (11)
Lemma 15.3. Let A be a simple quasi-crystal. Then for every compact set L we have

|L| < densA = R(L,A) (12)

We now prove Theorem 15.1. Given K with |K| < dens A we can assume that K/ and L satisfy (a) and
(b) with |L| < dens A. Since Theorem 15.1 can be rephrased as

|K| < densA = S(2,K,A) (13)
it follows immediately from (11) and (12) as it was announced.

Let us begin with the proof of Lemma 15.2. We restate (10) as follows:

Proposition 15.1. Let A be a uniformly discrete set and 1 < p < oo. If a compact set K is contained in the
interior of a compact set L then R(L, A) implies S(p, K, A).

Here is the proof of Proposition 15.1. As above we introduce a compact set K’ which lies in between K
and L. On the one hand K’ is contained in the interior of L and we have R(L,A) = S(co, K’,A). This
is Proposition 3, page 178, of [10]. On the other hand K is contained in the interior of K’ and we have
S(oo, K';A) = S(p, K,A). This is Theorem 3.32 by Olevskii and Ulanovskii in [12], page 32 (already
stated as Theorem 14.1). Proposition 15.1 is proved.

We are left with proving Lemma 15.3 which will be rewritten as
|K| < densA = R(K,A) (14)
where L is changed into K for notational convenience.

Lemma 15.3 will follow from the duality principle combined with Beurling’s theorem (Theorem 15.3
below). Let us begin with the duality principle (Proposition 4, page 181 of [10]).
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This duality principle will be stated as Theorem 15.2. The notations are given in Definition 15.1: 7 C R™
is an arbitrary compact set and A; C R™ is the model set defined by this compact window I and the lattice
I'. Asabove I'* = {y € RN,y -z € Z, Yz € T'}. The duality principle (Proposition 4, page 181 of [10]) is
the following statement:

Theorem 15.2. Let K/ C R"™ be a compact set and let M+ C R™ be defined by
Mg ={p2(v");7" €T*, p1(v") € K'}.

Let K be a compact set contained in the interior of K'. Then for every compact set I C R™ we have:

The duality principle provides us with a duality between sampling and interpolation since T'(I, M) is
a property of stable interpolation with respect to the L°(R™) norm while R(K, Ay) is a property of stable
sampling with respect to the B(R™) norm (Lemma 11.2). A spectacular improvement on the duality principle
with an outstanding application can be found in [4].

From now on m = 1 and [ is a compact interval, which implies that M- is a uniformly discrete set of
real numbers.

Definition 15.4. Let I be a compact interval. The Bernstein space By = PW§° consists of all functions
F € L>(R) whose distributional Fourier transform is supported by I.

Let us state the first half of Beurling’s theorem [12] for the reader’s convenience.

Theorem 15.3. Let I be a compact interval and M a uniformly discrete set of real numbers. Then the
following two properties are equivalent:
(a) Every bounded sequence c,,, m € M, is the restriction to M of a bounded function F belonging to
the Bernstein space Bj.
(b) The length of I is larger than the upper density of M.

Here is the proof of Lemma 15.3. Beurling’s theorem is seminal in this proof. As already stated the simple
quasi-crystal Ay is defined by a window I which is an interval. By assumption we have

|K| < densAj. (16)
Lemma 15.1 gives
dens A; = crlI|. (17)
Let K’ be a compact set whose interior contains K and which still satisfies
|K'| < dens A;. (18)
Let M be the “dual model set” defined by the lattice I'* and the window K’. Once more Lemma 15.1 yields
dens My < cp«|K'|. (19)
But cp+ cp = 1. Then (17), (18) and (19) imply
dens My < |I|. (20)
Next Beurling’s theorem yields property T'(I, M ). Finally the duality principle gives
T(I,Mgk:) = R(K,Aj) (21)

which ends the proof of Lemma 15.3. Theorem 15.1 is now fully proved.

I was hoping that Theorem 15.1 could be extended to arbitrary model sets defined by arbitrary windows.
Olevskii warned me that there was little hope to extend this proof to model sets defined by 2-dimensional
windows since the proof of Theorem 15.1 is based on Beurling’s theorem which is a 1-dimensional statement.
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Olevskii was right. Here is a simple 2-dimensional counter example. Let A; C R? be the set of all z =
(k 4+ {kv2},m + {m+v/2}), (k,m) € Z2. Then A; is a model set defined by the four-dimensional lattice

I‘z{k—kk\/ﬁ—l, m4+mvV2—n, kvV2 — 1, mvV2 —n; (k,1,m,n) € Z*} (22)

and the window I = [0, 1]°.

This model set A; is not a universal sampling set. Indeed Ay is the product A x A where A is a one
dimensional model set. The density of A is 1. Let J be an interval of length larger than 1. Then Beurling’s
theorem implies the following: There exists a non trivial function g such that (a) g is supported by J and
(b) its Fourier transform g vanishes on A. Let i be a non trivial function supported by [0, €]. Then f(z) =
g(x1)h(z2) is supported by a compact set K. whose measure is arbitrarily small as ¢ tends to 0 while f
vanishes on A;. Then A; cannot be a stable sampling set.

Keeping the lattice defined by (22) we now consider an arbitrary compact window I. Then the corre-
sponding model set A; is contained in the product A x B between two one dimensional model sets A and B
and cannot be a universal sampling set. The degeneracy does not come from the window but from the lattice.
It can be conjectured that “generic model sets” are universal sampling sets. We do not know if the set of
vertices of the Penrose paving is a universal sampling set.

We now return to the problem raised by Kahane. Property Q (K, A) is defined by (4).
Theorem 15.4. Let A be a simple quasi-crystal. Then for every Riemann integrable compact set K we have
|K| > dens A = Q(K, A). (23)
Conversely Q(K, A) implies | K| > dens A for every compact set K.

It would be interesting to know whether |K| = dens A = Q(K, A). Let us begin with the proof of the
second statement. We argue by contradiction. If |K| < dens A then we denote by K’ a compact set whose
interior contains K and which still satisfies |K'| < dens A. Lemma 15.3 yields R(K’,A). Leta € K’ \ K.
Therefore there exists an almost periodic function ¢ such that g(a) = 1, g = 0 on K and g € B,. This
contradicts Q(K, A).

Theorem 15.4 cannot hold if A is a lattice. A simple counter example is given by A = Z and Ky = [0, €]+
{0,1,--- , N — 1}. The measure of K tends to infinity with N and yet one cannot retrieve a 1—periodic
function from its restriction to K. Theorem 15.4 is not true for more general model sets. The counter
example is the same as the one used for Theorem 15.1. The model set A is a product A x A where A is a one
dimensional model set of density 1. Let J; be an interval of length smaller than 1 and let J> be an interval
with a large length. Let K = J; X Jy with |J1] - |J2| > 1. Let g4 be a non trivial almost periodic function in
one real variable, belonging to B4 and vanishing on .J;. Such g; exists by the argument used above. Finally
the function F is defined by F'(x1,22) = g1(x1). Then F belongs to By, (since 0 € A) and vanishes on K
without being the 0 function.

The proof of Theorem 15.4 is similar to the one used in Theorem 15.1. It combines the second half of the
duality principle with the second half of Beurling’s theorem. Let us be more precise.

Lemma 154. Let K C R"™ be a compact set and let M be the “dual model set” defined by
My ={p2(y");7" €I, p1(v") € K}
Then for every compact interval I we have
S(oco, I, Mg) = Q(K, Ar).

This is an almost trivial statement in the duality principle [10]. Here is the second half of Beurling’s
theorem.
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Theorem 15.5. Let M be a uniformly discrete set of real numbers and let I be an interval. Then the following
properties are equivalent:

(a) There exists a constant C' such that for every function F' belonging to the Bernstein space By one
has
[Flloc <C sup [F(m)]
meM

(b) The length of I is smaller than the lower density of M.

As in the proof of Theorem 15.1 we have |I| < dens M. Then Beurling’s theorem yields S(co, I, Mk ).
The duality principle ends the proof.

We can return now to the problem of stable interpolation.

Theorem 15.6. Let A be a simple quasi-crystal and 8 = dens A. Then A is a set of stable interpolation for
PWI% for every Riemann integrable compact set K such that |K| > .

Let us denote by K’ and L two Riemann integrable compact sets such that (a) K’ is contained in the
interior of K, (b) L is contained in the interior of K’ and (c) L still satisfies |L| > /3. Then Kahane’s
property Q(L, A) holds (Theorem 15.4). Proposition 3, page 178 of [10] yields T'(co, K’, A). Finally we
return to [12] and statement (¢) of Theorem 4.11 ends the proof. The proof of Theorem 4.11 is written by
Olevskii and Ulanovskii in the one dimensional case but it extends with minor changes to R". Here also
Theorem 15.6 is not true for more general model sets.
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